
Omar Sanseviero, Pedro Cuenca,
Apolinário Passos & Jonathan Whitaker

 Hands-On  
Generative AI with  
 Transformers and   
 Dif fusion Models



9 7 8 1 0 9 8 1 4 9 2 4 6

5 7 9 9 9
ISBN:   978-1-098-14924-6
US $79.99	   CAN $99.99

DATA

Omar Sanseviero was the chief  
llama officer and head of platform  
and community at Hugging Face.  
He has extensive experience working 
at the intersection of open source, 
product, research, and technical teams.

Pedro Cuenca is a machine learning 
engineer at Hugging Face.

Apolinário Passos is an artist  
and machine learning art engineer  
at Hugging Face, providing 
techniques and tooling that  
the creative and artistic community 
can use to interact with AI models. 

Jonathan Whitaker is a data scientist 
and deep learning researcher. In 
addition to his R&D work at answer.ai,  
he focuses on sharing knowledge  
via the DataScienceCastnet YouTube 
channel and various free online 
resources he has created.

Learn to use generative AI techniques to create novel text, 
images, audio, and even music with this practical, hands-on 
book. Readers will understand how state-of-the-art generative 
models work, how to fine-tune and adapt them to their needs, 
and how to combine existing building blocks to create new 
models and creative applications in different domains.

This go-to book introduces theoretical concepts followed by 
guided practical applications, with extensive code samples  
and easy-to-understand illustrations. You’ll learn how to use 
open source libraries to utilize transformers and diffusion 
models, conduct code exploration, and study several existing 
projects to help guide your work.

•	 Build and customize models that can generate  
text and images

•	 Explore trade-offs between using a pretrained  
model and fine-tuning your own model

•	 Create and utilize models that can generate, edit,  
and modify images in any style

•	 Customize transformers and diffusion models  
for multiple creative purposes

•	 Train models that can reflect your own unique style

“The essential guide for developers to master the tools and concepts behind 
the biggest AI revolution in the last decade.”
Lewis Tunstall, machine learning engineer at Hugging Face and coauthor of Natural Language Processing with Transformers

“This book is exactly what you need to get started with generative AI:  
from comprehensive explanations to thoughtful tips and do-it-yourself 
exercises, it has it all.”

		Luba Elliott, AI art curator, elluba.com

Hands-On Generative AI with   
Transformers and Dif fusion Models



Praise for Hands-On Generative AI with
Transformers and Diffusion Models

An essential technical guide that delivers clear, hands-on instructions
for implementing stable diffusion and fine-tuning language models.

A must-have for any AI developer’s bookshelf.
—Vicki Reyzelman, chief AI solutions architect, Mave Sparks

As a comprehensive and practical guide for anyone eager to master generative AI, this
book blends theory with real-world applications. From the fundamentals of language

models and diffusion techniques to advanced topics like fine-tuning and creating text-
to-image applications, the authors provide actionable Python code and clear insights

that empower readers to build, innovate, and stay ahead in this rapidly evolving
field. Their expertise and hands-on approach make this book an invaluable resource

for both beginners and experienced practitioners alike.
—Anil Sood, senior manager, Ernst & Young US

An invaluable guide that demystifies generative AI, blending practical
insights with hands-on techniques and examples covering various domains.

A must-read for those interested in the future in AI.
—Vishwesh Ravi Shrimali,

an engineer in the automobile industry

The book is an incredibly well-crafted guide that makes complex AI concepts accessible
to a wide spectrum of readers. The authors bring clarity to transformers and diffusion

models, making this a fantastic read for anyone looking to truly understand the
fundamental building blocks driving today’s generative AI.

—Sai M Vuppalapati,
data and AI/ML platforms product manager, Tubi TV



This book is a treasure trove for anyone curious about the potential of AI-generated
content. With a focus on solving relevant real life problems and hands-on guidance,

it skillfully bridges complex concepts and makes generative AI approachable for
enthusiasts and professionals alike. A must-read for anyone ready to dive into

this dynamic field and explore the power of generative AI.
—Lipi Deepaakshi Patnaik, senior software developer, Zeta

This book is exactly what you need to get started with generative AI: from comprehensive
explanations to thoughtful tips and do-it-yourself exercises, it has it all. An excellent guide

for anyone looking to learn how to use, adapt and evaluate generative AI models.
—Luba Elliott, AI art curator, elluba.com

Omar, Pedro, Apolinário, and Jonathan present an impressive blend of technical
depth and intuitive guidance, empowering readers to bring innovative generative

AI solutions to life with clarity and purpose. Through clear explanations of
transformers and diffusion models, their in-depth development and applications across

text, images, and audio, they make the complex world of AI both accessible and
actionable. This work equips the next generation of innovators to confidently navigate

GenAI’s technical, ethical, and practical challenges.
—Aditya Goel, AI consultant

This book is excellent for anyone starting their journey with generative AI. The authors
guide us through this complex topic in a simple and intuitive way.

—Zygmunt Lenyk, research engineer, Odyssey

Hands-On Generative AI with Transformers and Diffusion Models offers a comprehensive,
accessible guide to the core concepts and applications of generative AI. The authors

skilfully cover essential topics, from transformers and diffusion models to creative
applications, making it a must-read for those looking to master GenAI technologies.

—Gourav Singh Bais, senior data scientist
and senior technical content writer, Allianz Services

The essential guide for developers to master the tools and concepts behind the
biggest AI revolution in the last decade. This is such a serious competitor

to my own book that I fear for our royalties!
—Lewis Tunstall, machine learning engineer at Hugging Face

and coauthor of Natural Language Processing with Transformers



Omar Sanseviero, Pedro Cuenca,
Apolinário Passos, and Jonathan Whitaker

Hands-On Generative AI with
Transformers and Diffusion Models



978-1-098-14924-6

[LSI]

Hands-On Generative AI with Transformers and Diffusion Models
by Omar Sanseviero, Pedro Cuenca, Apolinário Passos, and Jonathan Whitaker

Copyright © 2025 Omar Sanseviero, Pedro Cuenca, Apolinário Passos, and Jonathan Whitaker. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Jill Leonard
Production Editor: Gregory Hyman
Copyeditor: Krsta Technology Solutions
Proofreader: Sharon Wilkey

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2024:  First Edition

Revision History for the First Edition
2024-11-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098149246 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-On Generative AI with Trans‐
formers and Diffusion Models, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098149246


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Part I. Leveraging Open Models

1. An Introduction to Generative Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Generating Images                                                                                                           4
Generating Text                                                                                                                7
Generating Sound Clips                                                                                                  8
Ethical and Societal Implications                                                                                   8
Where We’ve Been and Where Things Stand                                                              9
How Are Generative AI Models Created?                                                                  10
Summary                                                                                                                         12

2. Transformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
A Language Model in Action                                                                                       14

Tokenizing Text                                                                                                          14
Predicting Probabilities                                                                                             17
Generating Text                                                                                                          20
Zero-Shot Generalization                                                                                         28
Few-Shot Generalization                                                                                           30

A Transformer Block                                                                                                     33
Transformer Model Genealogy                                                                                    35

Sequence-to-Sequence Tasks                                                                                    35
Encoder-Only Models                                                                                               37

The Power of Pretraining                                                                                             40
Transformers Recap                                                                                                       43

Limitations                                                                                                                  45

v



Beyond Text                                                                                                                46
Project Time: Using LMs to Generate Text                                                                50
Summary                                                                                                                         50
Exercises                                                                                                                          52
Challenges                                                                                                                       52
References                                                                                                                       53

3. Compressing and Representing Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
AutoEncoders                                                                                                                 57

Preparing the Data                                                                                                     57
Modeling the Encoder                                                                                               61
Decoder                                                                                                                       64
Training                                                                                                                       65
Exploring the Latent Space                                                                                       70
Visualizing the Latent Space                                                                                     74

Variational AutoEncoders                                                                                            78
VAE Encoders and Decoders                                                                                    79
Sampling from the Encoder Distribution                                                               80
Training the VAE                                                                                                        83
VAEs for Generative Modeling                                                                                93

CLIP                                                                                                                                 93
Contrastive Loss                                                                                                         94
Using CLIP, Step-by-Step                                                                                          95
Zero-Shot Image Classification with CLIP                                                          101
Zero-Shot Image-Classification Pipeline                                                              102
CLIP Use Cases                                                                                                         103

Alternatives to CLIP                                                                                                    104
Project Time: Semantic Image Search                                                                      105
Summary                                                                                                                       106
Exercises                                                                                                                        108
Challenges                                                                                                                     108
References                                                                                                                     109

4. Diffusion Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
The Key Insight: Iterative Refinement                                                                      112
Training a Diffusion Model                                                                                        115

The Data                                                                                                                    116
Adding Noise                                                                                                            118
The UNet                                                                                                                   119
Training                                                                                                                     121
Sampling                                                                                                                    123
Evaluation                                                                                                                  124

vi | Table of Contents



In Depth: Noise Schedules                                                                                         126
Why Add Noise?                                                                                                       126
Starting Simple                                                                                                         128
The Math                                                                                                                   130
Effect of Input Resolution and Scaling                                                                 135

In Depth: UNets and Alternatives                                                                             137
A Simple UNet                                                                                                          138
Improving the UNet                                                                                                141
Alternative Architectures                                                                                        142

In Depth: Diffusion Objectives                                                                                  143
Project Time: Train Your Diffusion Model                                                              145
Summary                                                                                                                       145
Exercises                                                                                                                        146
Challenges                                                                                                                     147
References                                                                                                                     148

5. Stable Diffusion and Conditional Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149
Adding Control: Conditional Diffusion Models                                                     149

Preparing the Data                                                                                                   150
Creating a Class-Conditioned Model                                                                    152
Training the Model                                                                                                  153
Sampling                                                                                                                    157

Improving Efficiency: Latent Diffusion                                                                    159
Stable Diffusion: Components in Depth                                                                  160

The Text Encoder                                                                                                     161
The Variational AutoEncoder                                                                                164
The UNet                                                                                                                   167
Stable Diffusion XL                                                                                                  169
FLUX, SD3, and Video                                                                                            171
Classifier-Free Guidance                                                                                         172

Putting It All Together: Annotated Sampling Loop                                                173
Open Data, Open Models                                                                                           176

Challenges and the Sunset of LAION-5B                                                             177
Alternatives                                                                                                               178
Fair and Commercial Use                                                                                       178

Project Time: Build an Interactive ML Demo with Gradio                                   179
Summary                                                                                                                       180
Exercises                                                                                                                        181
Challenge                                                                                                                      181
References                                                                                                                     182

Table of Contents | vii



Part II. Transfer Learning for Generative Models

6. Fine-Tuning Language Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Classifying Text                                                                                                            186

Identify a Dataset                                                                                                     187
Define Which Model Type to Use                                                                         189
Select a Good Base Model                                                                                       190
Preprocess the Dataset                                                                                             190
Define Evaluation Metrics                                                                                      192
Train the Model                                                                                                        194
Still Relevant?                                                                                                            202

Generating Text                                                                                                            203
Picking the Right Generative Model                                                                     204
Training a Generative Model                                                                                  208

Instructions                                                                                                                   212
A Quick Introduction to Adapters                                                                            216
A Light Introduction to Quantization                                                                      221
Putting It All Together                                                                                                225
A Deeper Dive into Evaluation                                                                                  230
Project Time: Retrieval-Augmented Generation                                                    233
Summary                                                                                                                       235
Exercises                                                                                                                        236
Challenge                                                                                                                      236
References                                                                                                                     237

7. Fine-Tuning Stable Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
Full Stable Diffusion Fine-Tuning                                                                             239

Preparing the Dataset                                                                                              240
Fine-Tuning the Model                                                                                           242
Inference                                                                                                                    246

DreamBooth                                                                                                                 248
Preparing the Dataset                                                                                              250
Prior Preservation                                                                                                    250
DreamBoothing the Model                                                                                     251
Inference                                                                                                                    252

Training LoRAs                                                                                                            253
Giving Stable Diffusion New Capabilities                                                                256

Inpainting                                                                                                                  256
Additional Inputs for Special Conditionings                                                       256

Project Time: Train an SDXL DreamBooth LoRA by Yourself                             257
Summary                                                                                                                       258

viii | Table of Contents



Exercises                                                                                                                        259
Challenge                                                                                                                      259
References                                                                                                                     260

Part III. Going Further

8. Creative Applications of Text-to-Image Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Image to Image                                                                                                            263
Inpainting                                                                                                                     265
Prompt Weighting and Image Editing                                                                      267

Prompt Weighting and Merging                                                                            268
Editing Diffusion Images with Semantic Guidance                                            270

Real Image Editing via Inversion                                                                              274
Editing with LEDITS++                                                                                          276
Real Image Editing via Instruction Fine-Tuning                                                 277

ControlNet                                                                                                                    279
Image Prompting and Image Variations                                                                  283

Image Variations                                                                                                      283
Image Prompting                                                                                                     285

Project Time: Your Creative Canvas                                                                         288
Summary                                                                                                                       289
Exercises                                                                                                                        289
References                                                                                                                     290

9. Generating Audio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
Audio Data                                                                                                                    293

Waveforms                                                                                                                297
Spectrograms                                                                                                            298

Speech to Text with Transformer-Based Architectures                                          307
Encoder-Based Techniques                                                                                     308
Encoder-Decoder Techniques                                                                                312
From Model to Pipeline                                                                                          315
Evaluation                                                                                                                  318

From Text to Speech to Generative Audio                                                               324
Generating Audio with Sequence-to-Sequence Models                                     324
Going Beyond Speech with Bark                                                                           329
AudioLM and MusicLM                                                                                         332
AudioGen and MusicGen                                                                                       335
Audio Diffusion and Riffusion                                                                               336
Dance Diffusion                                                                                                       339
More on Diffusion Models for Generative Audio                                               340

Table of Contents | ix



Evaluating Audio-Generation Systems                                                                     340
What’s Next?                                                                                                                 341
Project Time: End-to-End Conversational System                                                 342
Summary                                                                                                                       342
Exercises                                                                                                                        345
Challenges                                                                                                                     345
References                                                                                                                     346

10. Rapidly Advancing Areas in Generative AI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
Preference Optimization                                                                                            349
Long Contexts                                                                                                              352
Mixture of Experts                                                                                                       354
Optimizations and Quantizations                                                                             356
Data                                                                                                                                358
One Model to Rule Them All                                                                                     359
Computer Vision                                                                                                         360
3D Computer Vision                                                                                                   362
Video Generation                                                                                                         363
Multimodality                                                                                                               365
Community                                                                                                                  367

A. Open Source Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369

B. LLM Memory Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373

C. End-to-End Retrieval-Augmented Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  385

x | Table of Contents



Preface

Generative AI is a revolutionary technology that has rapidly transitioned from lab
demos to real-world applications, impacting billions. It can create new content—
images, text, audio, videos, and more—by learning patterns from existing data,
thereby enhancing creativity, augmenting data, or assisting in many tasks. For
instance, a generative AI model trained on music can compose new melodies, while
one trained on text can generate stories or even programming code.

This book isn’t just for experts—it’s for anyone who wants to learn about this fascinat‐
ing new field. We won’t focus on building models from scratch or diving straight into
complicated mathematics. Instead, we’ll leverage existing models to solve real-world
problems, helping you to build a solid intuition around how these techniques work
and providing the foundation for you to keep exploring.

This hands-on approach, we hope, will help you get up and running quickly and
efficiently with generative AI. You’ll learn how to use pretrained models, adapt them
for your needs, and generate new data with them. You’ll also learn how to evaluate
the quality of generated data and explore ethical and social issues that may arise from
using generative AI. This exposure will allow you to stay up-to-date with new models
and help you identify areas that you may want to explore more deeply.

Who Should Read This Book
Given the impressive products and news you might have seen about generative AI,
it’s normal to be excited, or worried, about it! Whether you’re curious about how
programs can generate images, want to train a model to tweet in your style, or are
looking to gain a deeper understanding of products like ChatGPT, this book is for
you. With generative AI, we can do all of that and many other things, including these:

• Write summaries of news articles•
• Generate images based on a description•

xi



• Enhance the quality of an image•
• Transcribe meetings•
• Generate synthetic speech in your voice style•
• Incorporate new subjects or styles into image-generation models, like creating•

images of “your cat dressed as an astronaut”

No matter your reason, you’ve decided to learn about generative AI, and this book
will guide you through it.

Prerequisites
This book assumes that you are comfortable programming in Python and have a
foundational understanding of what machine learning is, including basic usage of
frameworks like PyTorch or TensorFlow. Having practical experience with training
models is not required, but it will be helpful to understand the content with more
depth. The following resources provide a good foundation for the topics covered in
this book:

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.,•
by Aurélien Géron (O’Reilly)

• Deep Learning for Coders with fastai and PyTorch by Jeremy Howard and Sylvain•
Gugger (O’Reilly)

If you feel intimidated by the prerequisites, don’t worry! The book is designed to
enhance your intuition and provide a hands-on approach to help you get started.

What You Will Learn
This book is divided into three parts:

• In Part I, “Leveraging Open Models”, we’ll introduce the fundamental building•
blocks of generative AI. You’ll learn how to use pretrained models to generate
text and images. This part will help you understand the basics of the field and
understand the big picture.

• Part II, “Transfer Learning for Generative Models”, is all about fine-tuning,•
showcasing ways to take existing models and adapt them to your needs. We’ll
walk you through how to teach a diffusion model a new concept, customize
a transformer model to classify text and reply in conversations, and explore
advanced techniques for working with large models on limited hardware. Don’t
worry if this is the first time you read about transformer or diffusion models;
you’ll learn about them soon.

xii | Preface

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632
https://www.oreilly.com/library/view/deep-learning-for/9781492045519


• In Part III, “Going Further”, we’ll extend the ideas from the previous parts, gen‐•
erating new modalities such as audio and getting creative with new applications.
After you’ve read this book, you’ll have a solid understanding of the methods and
techniques on which generative applications are built.

How to Read This Book
We designed the book to be read in order, but we have kept the chapters as self-
contained as possible so that you can jump around to the parts that interest you most.
Many of the ideas covered in this book apply to multiple modalities, so even if you
are interested in only one particular domain (such as image generation), you may still
find it valuable to skim through the other chapters.

We’ve included exercises and code examples throughout the book, designed to help
you get hands-on with the material. Try to complete these exercises as you go along,
and where possible, see if you can adapt the examples to your use cases. Trying things
out for yourself will help you build a much deeper understanding of the material.

Finally, most chapter summaries list additional resources for further reading. We
encourage you to explore these resources to deepen your understanding of the topics
covered in the book. You don’t need to read these resources before you progress to a
new chapter; you can come back later, whenever you are ready to go deeper into the
subjects that interest you.

Software and Hardware Requirements
To get the most out of this book, we highly recommend running the code examples
as you read along. Experimenting with the code by making changes and exploring
different scenarios will enhance your understanding. Working with transformers and
diffusion models can be computationally intensive, so having access to a computer
with an NVIDIA GPU is beneficial. While a GPU is not mandatory, it will signifi‐
cantly speed up training times.

You can use any of multiple online options, such as Google Colaboratory and Kaggle
Notebooks. Follow these instructions to set up your environment and follow along:

Using Google Colab
Most code should work on any Google Colab instance. We recommend you use
GPU runtimes for chapters with training loops.

Running code locally
To run the code on your computer, create a Python 3.10 virtual environment
using your preferred method. As an example, you can do it with conda like this:

conda create -n genaibook python=3.10
conda activate genaibook

Preface | xiii

https://oreil.ly/y1MHw
https://oreil.ly/Pkqq7
https://oreil.ly/Pkqq7


1 Rather than GPU, you can also use the MPS device, which might work on Macs with Apple Silicon, but we
have not tested this configuration extensively.

For optimal performance, we recommend using a CUDA-compatible GPU.1 If you
don’t know what CUDA is, don’t worry, we’ll explain it in the book.

Many support utilities and helper functions are used throughout the book. To access
them, please install the genaibook package:

pip install genaibook

This will, in turn, install the libraries required to run transformers and diffusion
models, along with PyTorch, matplotlib, numpy, and other essentials.

All code examples and supplementary material can be found in the book’s GitHub
repository. You can run all the examples interactively in Jupyter Notebooks, and the
repository will be regularly updated with the latest resources.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

xiv | Preface

https://oreil.ly/handsonGenAIcode
https://oreil.ly/handsonGenAIcode


This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/handsonGenAIcode.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Hands-On Generative
AI with Transformers and Diffusion Models by Omar Sanseviero, Pedro Cuenca, Apo‐
linário Passos, and Jonathan Whitaker (O’Reilly). Copyright 2025 Omar Sanseviero,
Pedro Cuenca, Apolinário Passos, and Jonathan Whitaker, 978-1-098-14924-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

Preface | xv

https://oreil.ly/handsonGenAIcode
mailto:support@oreilly.com
mailto:permissions@oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html


We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/handsonGenAI.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

State of the Art: A Moving Target
State of the art (SOTA) is used to describe the highest level of performance currently
achieved in a particular task or domain. In the field of generative AI, the SOTA is
constantly changing as new models are developed and new techniques are discovered.
This book will provide you with a solid grounding in the fundamentals of generative
AI, but by the time you read it, new models will have been released that outperform
the ones we discuss here.

Rather than trying to chase the ever-shifting best, we’ve tried to focus on general
principles that will help you understand how the models work in a way that will be
useful even as the field continues to evolve. New models rarely come out of nowhere
and often build on the ideas of previous models. By understanding the fundamentals,
you’ll be better equipped to understand the latest developments as they happen.

Acknowledgments
We would like to express our deepest gratitude to the incredible O’Reilly team,
particularly Jill Leonard, for her amazing guidance and support throughout this
entire process. Special thanks to Nicole Butterfield, Karen Montgomery, Kate Dullea,
Gregory Hyman, and Kristen Brown for their invaluable advice and contributions,
from initial scoping to the creation of the beautiful cover and illustrations.

We are deeply grateful to our technical reviewers: Vishwesh Ravi Shrimali, David
Mertz, Lipi Deepaakshi Patnaik, Luba Elliott, Anil Sood, Sai Vuppalapati, Ranjeeta
Bhattacharya, Rajat Dubey, Bryan Bischof, Vladislav Bilay, Gourav Singh Bais, Aditya
Goel, Lakshmanan Sethu Sankaranarayanan, Zygmunt Lenyk, Youssef Hosn, Vicki
Reyzelman, Lewis Tunstall, Sayak Paul, and Vaibhav Srivastav. Their insightful feed‐
back was instrumental in shaping this book.

We would also like to extend our gratitude to the Hugging Face team for their inspi‐
ration and collaboration, particularly Clémentine Fourrier for her insights on model
evaluation, Sanchit Gandhi for his guidance on audio-related topics, and Leandro
von Werra and Lewis Tunstall for helping us navigate the book-writing process. The
Hugging Face team continues to inspire us with its brilliance and kindness, helping
bring this project to life.

xvi | Preface

https://oreil.ly/handsonGenAI
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia


A heartfelt thank you to the countless friends, collaborators, and contributors who
have shaped the open-source ecosystem that we are proud to be part of. We are
grateful to the entire ML community for advancing the research, tools, and resources
that form the heart of this book. This work was crafted in Jupyter Notebooks, and
we owe special thanks to Jeremy Howard, Hamel Husain, and all the contributors to
Quarto and nbdev for making this possible.

Jonathan
I am very grateful to the community of researchers and hackers sharing their ideas
and pushing forward what is possible. To Jeremy Howard, Tanishq Abraham, and
the rest of the fastdiffusion crew who came together to learn all we could about
these ideas. And to my amazing coauthors, without whom this book could not have
happened!

Apolinário
I am grateful to my coauthors Omar, Pedro and Jonathan for the co-creation of this
book. Combining technology education and creativity has been a fun challenge to
tackle. I thank my friends who understand and support me even when I come along
to hang out carrying my laptop around and my Hugging Face colleagues for always
being supportive.

Pedro
Writing a book is a lot of fun, but it unfairly exacts sacrifices from the people you
love. I’m super lucky to have had the support of María José, my partner in life. She
made it easy for me to work on it, and when I was stuck she helped with common
sense reasoning that, frankly, is anything but common. I apologize to my Mom and
Dad for always bringing my laptop when I visit, to my son Pablo for not exploring
Hyrule or Eorzea as much as we’d have liked, and to my son Javier for sometimes
talking too much about work and too little about life. They are the best.

I’m truly inspired by my amazing coauthors. I admire and look up to them and can’t
believe how lucky I am to learn from them, every day. This extends to the Hugging
Face folks, whose enthusiasm and humility provide a primordial soup where things
happen, and to the open ML community at large, whose work is always advancing the
field but not always getting the credit it deserves.

Thank you.

Preface | xvii



Omar
Thank you, Michelle, for your constant encouragement throughout this process,
for all the brainstorming sessions, and for your support over the past two years. I
couldn’t have completed this project without you. Hikes are back on the table!

To my parents, Ana and Walter, thank you for nurturing my love for books from the
very beginning and for supporting me to become the person I am today.

Lastly, I want to thank my amazing coauthors—Pedro, Poli, and Jonathan. This
journey has been truly fun, and I’m so grateful that we accomplished this together.

xviii | Preface



PART I

Leveraging Open Models





CHAPTER 1

An Introduction to Generative Media

Generative models have become widely popular in recent years. If you’re reading
this book, you’ve probably interacted with a generative model at some point. Maybe
you’ve used ChatGPT to generate text, used style transfer in apps like Instagram, or
seen the deepfake videos that have been making headlines. These are all examples of
generative models in action!

In this book, we’ll explore the world of generative models, starting with the basics of
two families of generative models, transformers and diffusion, and working our way
up to more advanced topics. We’ll cover the types of generative models, how they
work, and how to use them. In this chapter, we’ll cover some of the history of how we
got here and take a look at the capabilities offered by some of the models, which we’ll
explore in more depth throughout the book.

So, what exactly is generative modeling? At its core, it’s about teaching a model to
generate new data that resembles its training data. For example, if I train a model on
a dataset of images of cats, I can then use that model to generate new images of cats
that look like they could have come from the original dataset. This is a powerful idea,
and it has a wide range of applications, from creating novel images and videos to
generating text with a specific style.

Throughout this book, you’ll discover popular tools that make using existing genera‐
tive models straightforward. The world of machine learning (ML) offers numerous
open-access models, trained on large datasets, available for anyone to use. Training
these models from scratch can be costly and time-consuming, but open-access mod‐
els provide a practical and efficient alternative. These pretrained models can generate
new data, classify existing data, and be adapted for new applications. One of the most
popular places to find open-access models is Hugging Face, a platform with over two
million models for many ML tasks, including image generation.

3

https://oreil.ly/evFEx


Generating Images
As an example of an open source library, we’ll kick off with diffusers. This popular
library provides access to state-of-the-art (SOTA) diffusion models. It’s a powerful,
simple toolbox that allows us to quickly load and train diffusion models.

By going to the Hugging Face Hub and filtering for models that generate images
based on a text prompt (text-to-image), we can find some of the most popular
models, such as Stable Diffusion and SDXL. We’ll use Stable Diffusion 1.5, a diffusion
model capable of generating high-quality images. If you browse the model website,
you can read the model card, an essential document for discoverability and reproduci‐
bility. There, you can read about the model, how it was trained, intended use cases,
and more.

Given we have a model (Stable Diffusion) and a tool to use the model (diffusers), we
can now generate our first image! When we load models, we’ll need to send them
to a specific hardware device, such as CPU (cpu), GPU (cuda or cuda:0), or Mac
hardware called Metal (mps). The genaibook library we mentioned in the Preface has
a utility function to select an appropriate device depending on where you run the
example code. For example, the following code will assign cuda to the device variable
if you have a GPU:

from genaibook.core import get_device

device = get_device()
print(f"Using device: {device}")

Using device: cuda

Next, we’ll load Stable Diffusion 1.5. The diffusers library offers a convenient, high-
level wrapper called StableDiffusionPipeline, which is ideal for this use case. Don’t
worry about all the parameters for now—the highlights include the following:

• There are many models with the Stable Diffusion architecture, so we need to•
specify the one we want to use. We are going to use stable-diffusion-v1-5/
stable-diffusion-v1-5, a mirror of the original Stable Diffusion 1.5 model
released by RunwayML.

4 | Chapter 1: An Introduction to Generative Media

https://oreil.ly/oVajm
https://oreil.ly/oVajm


1 You might wonder about the variant parameter. For some models, you might find multiple checkpoints with
different precision. When specifying torch_dtype=float16, we download the default model (float32) and
convert it to float16. By also specifying the fp16 variant, we’re downloading a smaller checkpoint already
stored in float16 precision, which requires half the bandwidth and storage to download it. Check the model
you want to use to find out if there are multiple precision variants.

2 Hugging Face repositories are Git-based repositories under the hood.

• We need to specify the precision we’ll load the model with. Precision is something•
you’ll learn more about later. At a high level, models are composed of many
parameters (millions or billions of them). Each parameter is a number learned
during training, and we can store these parameters with different levels of preci‐
sion (in other words, we can use more bits to store the model). A larger precision
allows the model to store more information, but it also requires more memory
and computation. On the other hand, we can use a lower precision by setting
torch_dtype=float16 and use less memory than the default float32. When
doing inference (a fancy way of saying “executing” the models), using float16 is
usually fine.1

The first time you run this code, it can take a bit: the pipeline downloads a model of
multiple gigabytes, after all! If you load the pipeline a second time, it will redownload
the model only if there has been a change in the remote repository that hosts the
model on Hugging Face.2 Hugging Face libraries store the model locally in a cache,
making things much faster for subsequent loads:

import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)

Now that the model is loaded, we can define a prompt—the text input the model will
receive. We can then pass the prompt through the model and generate our first image
based on that text! Try inputting the following prompt:

prompt = "a photograph of an astronaut riding a horse"
pipe(prompt).images[0]

Generating Images | 5



Exciting! With a couple of lines of code, we generated a new image. Play with the
prompt and generate new images. You might notice two things. First, running the
same code will generate different images each time. This is because the diffusion
process is stochastic in nature, meaning it uses randomness to generate images. We
can control this randomness by setting a seed:

import torch
torch.manual_seed(0)

Second, the generated images are not perfect. They might have artifacts, be blurry, or
not match the prompt at all. We’ll explore these limitations and how to improve the
quality of the generated images in later chapters. For instance:

• Chapters 4 and 5 dive into all the components behind diffusion models and•
how to get from text to new images. They rely on foundational methods like
AutoEncoders—introduced in Chapter 3—that can learn efficient representations
from input data and reduce the compute requirements to build diffusion and
other generative models.

• In Chapter 7, you’ll learn how to teach new concepts to Stable Diffusion. For•
example, we can teach Stable Diffusion the concept of “my dog” to generate
images of the author’s dog in novel scenarios, such as “my dog visiting the moon”.

• Chapter 8 shows how diffusion models can be used for more than just image•
generation, such as editing images with a prompt or filling empty parts of an
image.

6 | Chapter 1: An Introduction to Generative Media



Generating Text
Just as diffusers is a very convenient library for diffusion models, the popular trans‐
formers library is extremely useful for running transformer-based models and adapt‐
ing to new use cases. It provides a standardized interface for a wide range of tasks,
such as generating text, detecting objects in images, and transcribing an audio file
into text.

The transformers library provides different layers of abstractions. For example, if
you don’t care about all the internals, the easiest is to use pipeline, which abstracts
all the processing required to get a prediction. We can instantiate a pipeline by
calling the pipeline() function and specifying which task we want to solve, such as
text-classification:

from transformers import pipeline

classifier = pipeline("text-classification", device=device)
classifier("This movie is disgustingly good!")

[{'label': 'POSITIVE', 'score': 0.9998536109924316}]

The model correctly predicted that the sentiment in the input text was positive. By
default, the text-classification pipeline uses a sentiment analysis model under the
hood, but we can also specify other transformer-based text-classification models.

Similarly, we can switch the task to text generation (text-generation), with which
we can generate new text based on an input prompt. By default, the pipeline uses the
GPT-2 model. The transformer pipeline uses a default maximum number of words
to generate, so don’t be surprised if the output is truncated. You’ll learn later how to
change this:

from transformers import set_seed

# Setting the seed ensures we get the same results every time we run this code
set_seed(10)

generator = pipeline("text-generation", device=device)
prompt = "It was a dark and stormy"
generator(prompt)[0]["generated_text"]

It was a dark and stormy year, and my mind went blank," says the 27-year-old,
who has become obsessed with art, poetry and music since moving to France.
"I don't really know why, but there are things

Although GPT-2 is not a great model by today’s standards, it gives us an initial
example of transformers’ generation capabilities while using a small model. The same
concepts you learn about with GPT-2 can be applied to models such as Llama or
Mistral, some of the most powerful open-access models (at the time of writing).
Throughout the book, we’ll strike a balance between the quality and size of the
models. Usually, larger models have higher-quality generations. At the same time,

Generating Text | 7



we want people with consumer computers or access to free services, such as Google
Colab, to be able to create new generations by running code:

• Chapter 2 will teach you how transformer models work under the hood. We’ll•
dive into different types of transformer models and how to use them for generat‐
ing text.

• Chapter 6 will teach you how to continue training transformer models with our•
data for different use cases. This will allow us to make conversational models like
those you might have used with ChatGPT or Gemini. We’ll also discuss efficient
training approaches so that you can train transformer models on your computer.

Generating Sound Clips
Generative models are not limited to images and text. Models can generate videos,
short songs, synthetic spoken speech, protein proposals, and more!

Chapter 9 dives deep into audio-related tasks that can be solved with ML, such as
transcribing meetings and generating sound effects. For now, we can limit ourselves
to the now-familiar transformers pipeline and use the small version of MusicGen, a
model released by Meta to generate music conditioned on text:

pipe = pipeline("text-to-audio", model="facebook/musicgen-small", device=device)
data = pipe("electric rock solo, very intense")

print(data)

{'audio': array([[[0.12342193, 0.11794732, 0.14775363, ..., 0.0265964 ,
         0.02168683, 0.03067675]]], dtype=float32), 'sampling_rate': 32000}

Later, you’ll learn how audio data is represented and what these numbers are. Of
course, there’s no way for us to print the audio file directly in the book! The best
alternative is to show a viewer in our notebook or save the audio to a file we can play
with our favorite audio application. For example, we can use IPython.display() for
this:

import IPython.display as ipd

display(ipd.Audio(data["audio"][0], rate=data["sampling_rate"]))

Ethical and Societal Implications
While generative models offer remarkable capabilities, their widespread adoption
raises important considerations around ethics and societal impact. It’s important to
keep them in mind as we explore the capabilities of generative models. Here are a few
key areas to consider:

8 | Chapter 1: An Introduction to Generative Media



Privacy and consent
The ability of generative models to generate realistic images and videos based on
very little data poses significant challenges to privacy. For example, creating syn‐
thetic images from a small set of real images from an individual raises questions
about using personal data without consent. It also increases the risk of creating
deepfakes, which can be used to spread misinformation or harm individuals.

Bias and fairness
Generative models are trained on large datasets that contain biases. These biases
can be inherited and amplified by the generative models, as we’ll explore in
Chapter 2. For example, biased datasets used to train image-generation models
may generate stereotypical or discriminatory images. It’s important to consider
mitigating these biases and to ensure that generative models are used fairly and
ethically.

Regulation
Given the potential risks associated with generative models, there is a growing
call for regulatory oversight and accountability mechanisms to ensure responsi‐
ble development. This includes transparency requirements, ethical guidelines,
and legal frameworks to address the misuse of generative models.

It’s important to approach generative models with a thoughtful and ethical mindset.
As we explore the capabilities of these models, we’ll also consider the ethical implica‐
tions and how to use them responsibly.

Where We’ve Been and Where Things Stand
The research into and development of generative models began decades ago with
efforts focused on rule-based systems. As computing power and data availability
increased, generative models evolved to use statistical methods and ML. With the
emergence of deep learning as a powerful paradigm in ML and breakthroughs in
the fields of image and speech recognition, generative models have advanced signif‐
icantly. Although invented decades ago, Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have become widely popular in the last
decade. CNNs revolutionized image-processing tasks, and RNNs brought sequential
data-modeling capabilities, enabling tasks like translating text and text generation.

The introduction of Generative Adversarial Networks (GANs) by Ian Goodfellow in
2014, and variants such as Deep Convolutional GANs (DCGANs) and conditional
GANs, brought a new era of generative models. GANs have been used to generate
high-quality images and applied to tasks like style transfer, enabling users to apply
artistic styles to their images with astonishing realism. Although quite powerful, the
quality of GANs has been surpassed by diffusion models in recent years.

Where We’ve Been and Where Things Stand | 9



Similarly, although RNNs were the to-go tool for language modeling, transformer
models, including architectures like GPT, achieved SOTA performance in Natural
Language Processing (NLP). These models have demonstrated remarkable capabili‐
ties in tasks such as language understanding, text generation, and machine transla‐
tion. GPT, in particular, became extremely popular because of its ability to generate
coherent and contextually relevant text. Not long afterward, a huge wave of genera‐
tive language models emerged.

The field of generative AI is more accessible than ever because of the rapid expansion
of research, resources, and development in recent years. A growing community inter‐
ested in the area, a rich open source ecosystem, and research facilitating deployment
have led to a wide range of applications and use cases. Since 2023, a new generation
of models that can generate high-quality images, text, code, videos, and more has
emerged; examples include ChatGPT, DALL·E, Imagen, Stable Diffusion, Llama,
Mistral, and many others.

How Are Generative AI Models Created?
Typically, the creation of AI models comes down to big budgets or open source.

Several of the most impressive generative models in the past couple of years were
created by influential research labs in big, private companies. OpenAI developed
ChatGPT, DALL·E, and Sora; Google built Imagen, Bard, and Gemini; and Meta
created Llama and Code Llama.

There’s a varying degree of openness in the way these models are released. Some can
be used via specific UIs, some have access through developer APIs, and some are
just announced as research reports with no public access at all. In some cases, code
and model weights are released as well: these are usually called open source releases
because those are the essential artifacts necessary to run the model on your hardware.
Frequently, however, they are kept hidden for strategic reasons.

At the same time, an ever-increasing, energetic, and enthusiastic community uses
open source models as the clay for their creativity. All types of practitioners, includ‐
ing researchers, engineers, tinkerers, and amateurs, build on top of one another’s
work and come up with novel solutions and clever ideas that push the field forward,
one commit at a time. Some of these ideas make their way into the theoretical corpus
of knowledge where researchers draw from, and new impressive models that use
them come out after a while.

Big models, even when hidden, serve as inspiration for the community, whose work
yields fruits that serve the field as a whole.

10 | Chapter 1: An Introduction to Generative Media



This cycle can work only because some of the models are open source and can
be used by the community. Companies that release open source models don’t do it
for altruistic reasons but because they discover economic value in this strategy. By
providing code and models that are adopted by the community, they receive public
scrutiny with bug fixes, new ideas, derived model architectures, or even new datasets
that work well with the models released. Because all these contributions are based on
the assets they published, these companies can quickly adopt them and thus move
faster than they would on their own. When Meta released Llama, one of the most
popular language models (LMs), a thriving ecosystem organically grew around it.

Both established and new companies alike, including Meta, Stability AI (Stable Diffu‐
sion), or Mistral AI, have embraced varying degrees of open source as part of their
business strategy. This is as legitimate as the strategy of competing companies that
prefer to keep their trade secrets behind closed doors (even if those companies can
also draw from the open source community).

At this point, we’d like to clarify that model releases are rarely truly open source.
Unlike in the software world, source code is not enough to fully understand an
ML system. Model weights are not enough either: they are just the final output of
the model training process. Being able to exactly replicate an existing model would
require the source code used to train the model (not just the modeling code or the
inference code), the training regime and parameters, and, crucially, all the data used
for training. None of these, and particularly the data, are usually released.

If there were access to these details, it would be possible for the community and
the public to understand how the model works, explore the biases that may afflict
it, and better assess its strengths and limitations. Access to the weights and model
code provides an imperfect estimation of all this knowledge, but the actual hard data
would be much better. On top of that, even when the models are publicly released,
they often come out with a special license that does not adhere to the Open Source
Initiative’s definition of open source. This is not to say that the models are not useful
or that the companies are not doing a good thing by releasing them, but it’s an
important context to keep in mind and one of the reasons we’ll often say open access
instead of open source.

Be that as it may, there has never been a better time to build generative models or
with generative models. You don’t need to be an engineer in a top-notch research lab
to come up with ideas to solve the problems that interest you or to contribute to the
field. We hope you find these pages helpful in your journey!

How Are Generative AI Models Created? | 11



Summary
Hopefully, after generating your first images, text, and audios, you’ll be excited to
learn how diffusion and transformers work under the hood, how to adapt them for
new use cases, and how to use them for different creative applications. Although this
chapter focused on high-level tools, we’ll build solid foundations and intuition on
how these models work as we embark on our generative journey. Let’s go ahead and
learn about the principles of generative models!

12 | Chapter 1: An Introduction to Generative Media



CHAPTER 2

Transformers

Many trace the most recent wave of advances in generative AI to the introduction
of a class of models called transformers in 2017. Their most well-known applications
are the powerful large language models (LLMs), such as Llama and GPT-4, used
by hundreds of millions daily. Transformers have become a backbone for modern
AI applications, powering everything from chatbots and search systems to machine
translation and content summarization. They’ve even branched out beyond text,
making waves in fields like Computer Vision, music generation, and protein folding.
In this chapter, we’ll explore the core ideas behind transformers and how they work,
with a focus on one of the most common applications: language modeling.

Before we dive into the details of transformers, let’s take a step back and understand
what language modeling is. At its core, a language model (LM) is a probabilistic
model that learns to predict the next word (or token) in a sequence based on the pre‐
ceding or surrounding words. Doing so captures the language’s underlying structure
and patterns, allowing the model to generate realistic and coherent text. For example,
given the sentence “I began my day eating”, an LM might predict the next word as
“breakfast” with a high probability.

So, how do transformers fit into this picture? Transformers are designed to handle
long-range dependencies and complex relationships between words efficiently and
expressively. For example, imagine that you want to use an LM to summarize a
news article, which might contain hundreds or even thousands of words. Traditional
LMs, such as RNNs, struggle with long contexts, so the summary might skip critical
details from the beginning of the article. Transformer-based LMs, however, show
strong results in this task. Besides high-quality generations, transformers have other
properties, such as efficient parallelization of training, scalability, and knowledge
transfer, making them popular and well suited for multiple tasks. At the heart of this

13



innovation lies a mechanism called self-attention, which allows the model to weigh
the importance of each word in the context of the entire sequence.

To help us build intuition about how LMs work, we’ll use code examples that interact
with existing models, and we’ll describe the relevant pieces as we find them. Let’s get
to it.

A Language Model in Action
In this section, we will load and interact with an existing small (pretrained) trans‐
former model to get a high-level understanding of how they work. In recent years,
companies, research labs, and open communities have released thousands of open
models that you can use.

We’ll pick a small model you can run directly in your hardware, but consider that
the same principles apply to the larger (over 100 times larger!) and more powerful
models that have since been released. Some good examples of small models are as
follows:

GPT-2 (137M)
This model made headlines in 2019 for its (then) impressive text-generation
capabilities. Although small and almost quaint by today’s standards, GPT-2 illus‐
trates how these LMs work.

Qwen2 (494M)
This is an Alibaba model and part of the Qwen family. The Qwen family has
models with 500 million to over 100 billion parameters.

SmolLM (135M)
This is a model by Hugging Face trained with very high-quality data. The authors
released models with 135 million, 360 million, and 1.7 billion parameters.

Chapter 6 will provide more insights into picking the suitable model for your use
case. For now, we suggest exploring one of the models in the preceding list (or all of
them!).

Tokenizing Text
Let’s begin our journey to generate text based on an initial input. For example,
given the phrase “it was a dark and stormy”, we want the model to generate words
to continue it. Models can’t receive text directly as input; their input must be data
represented as numbers. To feed text into a model, we must first find a way to turn
sequences into numbers. This process is called tokenization, a crucial step in any NLP
pipeline.

14 | Chapter 2: Transformers



1 You can explore various tokenizers interactively in the Tokenizer Playground.

An easy option would be to split the text into individual characters and assign each
a unique numerical ID (Figure 2-1). This scheme could be helpful for languages
such as Chinese, where each character carries much information. In languages
like English, this creates a small token vocabulary, and there will be few unknown
tokens (characters not found during training) when running inference. However, this
method requires many tokens to represent a string, which is bad for performance
and erases some of the structure and meaning of the text—a downside for accuracy.
Each character carries little information, making it hard for the model to learn the
underlying structure of the text.

Figure 2-1. In character-level tokenization, each letter has its own ID, with all instances
of the same letter having the same ID. In this example, the IDs correspond to their
position in the alphabet.

Another approach could be to split the text into individual words (Figure 2-2). While
this lets us capture more meaning per token, it has the downsides that we need to deal
with more unknown words (e.g., typos or slang), we need to deal with different forms
of the same word (e.g., “run”, “runs”, and “running”), and we might end up with a very
large vocabulary, which could easily be over half a million words for languages such
as English.

Figure 2-2. In word-level tokenization, the same word always has the same ID

Modern tokenization strategies strike a balance between these two extremes, splitting
the text into subwords that capture both the structure and meaning of the text
while still being able to handle unknown words and different forms of the same
word (Figure 2-3). Characters that are usually found together (like most frequent
words) can be assigned a single token that represents the whole word or group. Long
or complicated words, or words with many inflections, may be split into multiple
tokens, where each one usually represents a meaningful section of the word.

There is no single best tokenizer; each LM comes with its own. The differences
between tokenizers reside in the number of tokens supported and the tokenization
strategy. For example, the GPT-2 tokenizer averages 1.3 tokens per word.1

A Language Model in Action | 15

https://oreil.ly/fDJCc


Figure 2-3. In this example of subword tokenization, llama is split into two tokens
because it was likely not a common word in the data used to create the tokenizer

Let’s find out how the Qwen tokenizer handles a sentence. We’ll first use the trans‐
formers library to load the tokenizer corresponding to Qwen. Then we’ll run the
input text (also called prompt) through the tokenizer to encode the string into num‐
bers representing the tokens. We’ll use the decode() method to convert each ID back
into its corresponding token for demonstration purposes:

from transformers import AutoTokenizer

# Use the id of the model you want to use
# GPT-2 "openai-community/gpt2"
# Qwen "Qwen/Qwen2-0.5B"
# SmolLM "HuggingFaceTB/SmolLM-135M"

prompt = "It was a dark and stormy"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
input_ids = tokenizer(prompt).input_ids
input_ids

[2132, 572, 264, 6319, 323, 13458, 88]

for t in input_ids:
    print(t, "\t:", tokenizer.decode(t))

2132    :  It
572     :   was
264     :   a
6319    :   dark
323     :   and
13458   :   storm
88      :  y

As shown, the tokenizer splits the input string into a series of tokens and assigns a
unique ID to each. Most words are represented by a single token, but when using the
Qwen and GPT-2 tokenizers, “stormy” is represented by two tokens: one for “ storm”
(including the space before the word) and one for the suffix “y”. This allows the
model to learn that “stormy” is related to “storm” and that the suffix “y” is often used
to turn nouns into adjectives. On the other hand, the SmolLM tokenizer does not
split any of the words in this particular sentence. Each model is usually paired with
its own tokenizer, so always use the proper tokenizer when using a model. The three
models of this section have vocabularies that go from 50,000 to 150,000 tokens, which
allows them to represent almost any input text.

16 | Chapter 2: Transformers



Even though we usually talk about training tokenizers, this has
nothing to do with training a model. Model training is stochastic
(nondeterministic) by nature, whereas we train a tokenizer using
a statistical process that identifies which subwords are the best to
pick for a given dataset. How to choose the subwords is a design
decision of the tokenization algorithm. Therefore, tokenization
training is deterministic. We won’t dive into different tokenization
strategies, but some of the most popular subword approaches are
Byte-level Byte-Pair Encoding (BPE), used in GPT-2, WordPiece,
and SentencePiece.

Predicting Probabilities
GPT-2, Qwen, and SmolLM were trained as causal language models (also known
as autoregressive), which means they were trained to predict the next token in a
sequence, given the preceding tokens. The transformers library has high-level tools
that enable us to use such a model to generate text or perform other tasks quickly. It
is helpful to understand how the model makes its predictions by directly inspecting
them on this language-modeling task. We begin by loading the model:

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B")

Note the use of AutoTokenizer and AutoModelForCausalLM. The transformers library
supports hundreds of models and their corresponding tokenizers. Rather than
having to learn the name of each tokenizer and model class, we will use Auto
Tokenizer and AutoModelFor*. For the automatic model class, we need to specify
for which task we’re using the model, such as classification (AutoModelForSequence
Classification) or object detection (AutoModelForObjectDetection). In the case of
Qwen2, we’ll use the class corresponding to the causal language-modeling task. When
using the automatic classes, transformers will pick an adequate default class based
on the configuration of a model. For example, under the hood, transformers will use
Qwen2Tokenizer and Qwen2ForCausalLM.

If we feed the tokenized sentence from the previous section through the model, we
get a result with 151,936 values for each token in the input string:

# We tokenize again but specifying the tokenizer that we want it to
# return a PyTorch tensor, which is what the model expects,
# rather than a list of integers
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

outputs = model(input_ids)
outputs.logits.shape  # An output for each input token

torch.Size([1, 7, 151936])

A Language Model in Action | 17



The first dimension of the output is the number of batches (1 because we just ran a
single sequence through the model). The second dimension is the sequence length,
or the number of tokens in the input sequence (7 in this case). The third dimension
is the vocabulary size. We get a list of ~150,000 numbers for each token in the
original sequence. These are the raw model outputs, or logits, that correspond to
the tokens in the vocabulary. For every input token, the model predicts how likely
each token in the vocabulary is to continue the sequence up to that point. With our
example sentence, the model will predict logits for “It”, “It was”, “It was a”, and so on.
Higher logit values mean the model considers the corresponding token a more likely
continuation of the sequence. Table 2-1 shows the input sequences, the most likely
token ID, and its corresponding token.

Logits are the raw output of the model (a list of numbers such as
[0.1, 0.2, 0.01, …]). We can use the logits to select the most likely
token to continue the sequence. However, we can also convert the
logits into probabilities, as we’ll do soon.

Table 2-1. The most likely token to continue input sequences according to the Qwen2 model

Input sequence ID of most likely next token Corresponding token
It 374 is

It was 264 a

It was a 2244 great

It was a dark 323 and

It was a dark and 13458 storm

It was a dark and 88 y

It was a dark and stormy 3729 (let’s figure this one)

Let’s focus on the logits for the entire prompt and learn how to predict the next word
of the sequence. We can find the index of the token with the highest value by using
the argmax() method:

final_logits = model(input_ids).logits[0, -1]  # The last set of logits
final_logits.argmax()  # The position of the maximum

tensor(3729)

3729 corresponds to the ID of the token the model considers most likely to follow the
input string “It was a dark and stormy”. Decoding this token, we can find out that this
model knows a few story tropes:

tokenizer.decode(final_logits.argmax())

' night'

18 | Chapter 2: Transformers



2 We use < to align the token to the left, 10 to specify the width of the field, and .2% to format the probability as
a percentage with two decimal places.

So “ night” is the most likely token. This makes sense considering the beginning of
the sentence we provided as input. The model learns how to pay attention to other
tokens by using a mechanism called self-attention, which is the fundamental building
block of transformers. Intuitively, self-attention allows the model to identify how
much each token contributes to the meaning of the sequence.

Transformer models contain many of these attention layers, each
one specializing in some aspect of the input. Contrary to heuris‐
tics systems, these aspects or features are learned during training,
instead of being specified beforehand.

Let’s now find out which other tokens were potential candidates by selecting the top
10 values with topk():

import torch

top10_logits = torch.topk(final_logits, 10)
for index in top10_logits.indices:
    print(tokenizer.decode(index))

 night
 evening
 day
 morning
 winter
 afternoon
 Saturday
 Sunday
 Friday
 October

We need to convert logits into probabilities to better understand how confident the
model is about each prediction. We can do that by comparing each value with all the
other predicted values and normalizing so that all the numbers sum up to 1. That’s
precisely what the softmax() operation does. The following code uses softmax() to
print out the top 10 most likely tokens and their associated probabilities according to
the model:2

top10 = torch.topk(final_logits.softmax(dim=0), 10)
for value, index in zip(top10.values, top10.indices):
    print(f"{tokenizer.decode(index):<10} {value.item():.2%}")

 night     88.71%
 evening   4.30%
 day       2.19%

A Language Model in Action | 19



 morning   0.49%
 winter    0.45%
 afternoon 0.27%
 Saturday  0.25%
 Sunday    0.19%
 Friday    0.17%
 October   0.16%

Before going further, we suggest you experiment with the preceding code. Here are
some ideas for you to try:

Change a few words
Try changing the adjectives (e.g., “dark” and “stormy”) in the input string and
find out how the model’s predictions change. Is the predicted word still “night”?
How do the probabilities change?

Change the input string
Try different input strings and analyze how the model’s predictions change. Do
you agree with the model’s predictions?

Grammar
What happens if you provide a string that is not a grammatically correct
sequence? How does the model handle it? Look at the probabilities of the top
predictions.

Generating Text
Once we know how to get the model’s predictions for the next token in a sequence, it
is easy to generate text by repeatedly feeding the model’s predictions back into itself.
We can call model(ids), generate a new token ID, add it to the list, and call the
function again. To make it more convenient to generate multiple words, transformers
autoregressive models have a generate() method ideal for this case. Let’s explore an
example:

output_ids = model.generate(input_ids, max_new_tokens=20)
decoded_text = tokenizer.decode(output_ids[0])

print("Input IDs", input_ids[0])
print("Output IDs", output_ids)
print(f"Generated text: {decoded_text}")

Input IDs tensor([ 2132,   572,   264,   6319,   323,   13458,   88])
Output IDs tensor([ 2132,   572,   264,   6319,   323,   13458,   88,   3729,
      13,   576,   12884,   572,  6319,    323,   279,    9956,  572,   1246,
    2718,    13,     576, 11174,   572,  50413,  1495,     323,  279])
Generated text: It was a dark and stormy night. The sky was dark and the
wind was howling. The rain was pouring down and the

When we ran the model() forward method in the previous section, it returned a list
of logits for each token in the vocabulary (151,936). Then, we had to calculate the

20 | Chapter 2: Transformers



probabilities and pick the most likely token. The generate() method abstracts this
logic away. It makes multiple forward passes, predicts the next token repeatedly, and
appends it to the input sequence. The method provides us with the token IDs of the
final sequence, including both the input and new tokens. Then, with the tokenizer
decode() method, we can convert the token IDs back to text.

We can use many possible strategies to perform generation. The one we just did,
picking the most likely token, is called greedy decoding (Figure 2-4). Although
this approach is straightforward, it can sometimes lead to suboptimal outcomes,
especially in generating longer text sequences. Greedy decoding can be problematic
because it doesn’t consider the overall probability of a sentence, focusing only on the
immediate next word. For instance, given the starting word “Sky” and the choices
“blue” and “rockets” for the next word, greedy decoding might favor “Sky blue”
since “blue” initially appears more likely following “Sky”. However, this approach
might overlook a more coherent and probable overall sequence like “Sky rockets
soar”. Therefore, greedy decoding can sometimes miss out on the most likely overall
sequence, leading to less-optimal text generation.

Figure 2-4. This greedy decoding example generates “The dog barks” because “dog” is the
most likely second token with a probability of 0.5, and “barks” is the most likely token
following “The dog”

Rather than selecting one token at a time, techniques such as beam search (see Fig‐
ure 2-5) explore multiple possible continuations of the sequence and return the most
likely sequence of continuations. Shown in the following code example, this approach

A Language Model in Action | 21



keeps the most likely num_beams of hypotheses during generation and chooses the
most likely one.

Figure 2-5. This beam search example finds a more likely sequence: “The dog barks” has
a total probability of 0.5 × 0.4 = 0.2, while “The horse runs” has a probability of 0.4 ×
0.9 = 0.36

beam_output = model.generate(
    input_ids,
    num_beams=5,
    max_new_tokens=30,
)

print(tokenizer.decode(beam_output[0]))

It was a dark and stormy night. The wind was howling, and the rain was
pouring down. The sky was dark and gloomy, and the air was filled with
the

Depending on the model, you might get somewhat repetitive results. Although
not frequently used, there are multiple parameters we can control to perform less-
repetitive generations. Let’s consider two examples:

repetition_penalty

How much to penalize already generated tokens, avoiding repetition. A good
default value is 1.2.

22 | Chapter 2: Transformers



3 In statistics, a distribution is a way of describing how the values of a variable are spread out. It tells us how
often different values of the variable occur.

bad_words_ids

A list of tokens that should not be generated (e.g., to avoid generating offensive
words).

Let’s explore what we can achieve by penalizing repetition:

beam_output = model.generate(
    input_ids,
    num_beams=5,
    repetition_penalty=2.0,
    max_new_tokens=38,
)

print(tokenizer.decode(beam_output[0]))

It was a dark and stormy night. The sky was filled with thunder and
lightning, and the wind howled in the distance. It was raining cats
and dogs, and the streets were covered in puddles of water.

Which generation strategy to use? As often is true in ML, it depends. Beam search
works well when the desired length of the text is somewhat predictable. This is the
case for tasks such as summarization or translation but not for open-ended genera‐
tion, where the output length can vary greatly, leading to repetition. Although we can
inhibit the model to avoid repeating itself, doing so can also lead to it performing
worse. Also note that beam search will be slower than greedy search as it needs to run
inference for multiple beams simultaneously, which can be an issue for large models.

When we generate with greedy search and beam search, we push the model to
generate text with a distribution of high-probability next words, as can be seen in
Figure 2-6.3 Interestingly, high-quality human language does not follow a similar
distribution. Human text tends to be more unpredictable. The authors of an excel‐
lent paper about this counterintuitive observation conjecture that human language
disfavors predictable words—people optimize against stating the obvious. The paper
proposes a method called nucleus sampling.

Before discussing nucleus sampling, let’s discuss sampling. With sampling, we pick
the next token by sampling from the probability distribution of the next tokens. This
means that sampling is not a deterministic generation process. If the next possible
tokens are “night” (60%), “day” (35%), and “apple” (5%), rather than choosing “night”
(with greedy search), we will sample from the distribution. In other words, there will
be a 5% chance of picking “apple” even if it’s a low-probability token and leads to
a nonsensical generation. Sampling avoids creating repetitive text, hence leading to
more diverse generations.

A Language Model in Action | 23

https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751


Figure 2-6. Greedy generation will always pick the most likely next token, while sampling
will pick the next token by sampling from the probability distribution

Sampling is done in transformers by using the do_sample parameter:

from transformers import set_seed

# Setting the seed ensures we get the same results every time we run this code
set_seed(70)

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    max_new_tokens=34,
    top_k=0,  # We'll come back to this parameter
)

print(tokenizer.decode(sampling_output[0]))

It was a dark and stormy night. Kevin said he was going to stay up all
night, staring at the cloudless stars, wondering, what if I lost my
dream.He’d been teasing her about

We can manipulate the probability distribution before we sample from it, making it
sharper or flatter using a temperature parameter. A temperature higher than 1 will
increase the randomness of the distribution, which we can use to encourage genera‐
tion of less-probable tokens. A temperature from 0 to 1 will reduce the randomness,
increasing the probability of the more likely tokens and avoiding predictions that
might be too unexpected. A temperature of 0 will move all the probability to the
most likely next token, which is equivalent to greedy decoding, as can be seen in
Figure 2-7.

24 | Chapter 2: Transformers



Figure 2-7. Effect of temperature on the token probability distribution

Compare the effect of this temperature parameter on the generated text in the follow‐
ing example:

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.4,
    max_new_tokens=40,
    top_k=0,
)

print(tokenizer.decode(sampling_output[0]))

It was a dark and stormy night in 1878. The only light was the moon,
and the only sound was the distant roar of the thunder. The only thing
that could be heard was the sound of the storm

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.001,
    max_new_tokens=40,
    top_k=0,
)

print(tokenizer.decode(sampling_output[0]))

A Language Model in Action | 25



It was a dark and stormy night. The sky was dark and the wind was howling.
The rain was pouring down and the lightning was flashing. The sky was dark
and the wind was howling. The rain was pouring down

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    temperature=3.0,
    max_new_tokens=40,
    top_k=0,
)

print(tokenizer.decode(sampling_output[0]))

It was a dark and stormy清晨一步
            女人们都 BL咻任何时候 بن تص  attendees*sinruitmentโลกuresindi
ambassadors eventData原来是 ехалENCE hemisphere worldsω.Anyar久� Sous dapat
HVışísdía.inventory emptiedfuncpping {\Sex

Well, the first test is much more coherent than the second one. The second, which
uses a very low temperature, is repetitive (similar to greedy decoding). Finally, the
third sample, with an extremely high temperature, gives gibberish text.

One parameter you likely noticed is top_k. What is it? Top-K sampling is a simple
sampling approach in which only the K most likely next tokens are considered. For
example, using top_k=5, the generation method will first filter the most likely five
tokens and redistribute the probabilities so that they add to 1:

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    max_new_tokens=40,
    top_k=5,
)

print(tokenizer.decode(sampling_output[0]))

It was a dark and stormy night in New York. The city was on the brink
of a violent storm. The sky above was painted with a mix of bright red
and orange. It was a sign, but the storm had arrived

Hmm…this could be better. An issue with Top-K sampling is that the number of
relevant candidates in practice could vary greatly. If we define top_k=5, some distri‐
butions will still include tokens with very low probability, while others will consist of
only high-probability tokens.

The final generation strategy we’ll visit is Top-p sampling (also known as nucleus
sampling). Rather than sampling the K words with the highest probability, we will use
all the most likely words whose cumulative probability exceeds a given value. If we
use top_p=0.94, we’ll first filter only to keep the most likely words that cumulatively

26 | Chapter 2: Transformers



have a probability of 0.94 or higher, as can be observed in Figure 2-8. We then
redistribute the probability and do regular sampling. Let’s check this out in action.

Figure 2-8. Effect of top_k and top_p on the token probability distribution. With
top_k=5, only the five most likely tokens are considered. With top_p=0.94, we include
all tokens until they cumulatively have a probability of 0.94.

In transformers, we can use Top-p sampling and modify the probability with the
top_p parameter:

sampling_output = model.generate(
    input_ids,
    do_sample=True,
    max_new_tokens=40,
    top_p=0.94,
    top_k=0,
)

print(tokenizer.decode(sampling_output[0]))

It was a dark and stormy night in the skies of Morrowind, and a particularly
ruthless fighter had decided that these careless tourists at Carrabine
should be dealt with with maximum cruelty. The chief of this important
operation was appointed by

Both Top-K and Top-p are commonly used in practice. They can even be combined
to filter out low-probability words but have more generation control. The issue
with the stochastic generation methods is that the generated text doesn’t necessarily
contain coherence.

We’ve explored three generation methods: greedy search, beam-search decoding, and
sampling (with temperature, Top-K, and Top-p providing further control). Those are
lots of approaches! If you feel underwhelmed by the model generations, consider
that it’s a model with a few hundred million parameters; the fact that it can generate
coherent text is already impressive! New models spawn billions or even hundreds
of billions of parameters and are trained with higher-quality data, so switching to
a more modern or larger model will lead to better results. You can find an online

A Language Model in Action | 27

https://oreil.ly/bH8AJ


4 An excellent deep dive into contrastive search is Tian Lan’s “Generating Human-Level Text with Contrastive
Search” blog post.

5 The first example in the GPT-2 release blog post was famously a news story about unicorns.

interactive demo to visualize how temperature, top_p, and top_k impact a genera‐
tion distribution.

If you want to experiment with generation further, here are some suggestions:

• Experiment with different parameter values. How does increasing the number•
of beams impact the quality of your generation? What happens if you reduce or
increase your top_p value?

• One approach to reduce repetition in beam search is introducing penalties•
for n-grams (word sequences of n words). This can be configured using
no_repeat_ngram_size, which avoids repeating the same n-gram. For example,
if you use no_repeat_ngram_size=4, the generation will never contain the exact
four consecutive words.

• Top-K can lead to discarding high-quality tokens, and Top-p can lead to includ‐•
ing some low-probability tokens. For a more dynamic approach, you can use
Min-P (min_p), which multiplies min_p by the top token’s probability, and then
include only tokens above that percentage. In other words, Min-P defines a
dynamic threshold based on the top token’s probability.

• A newer method, contrastive search, can generate long, coherent output while•
avoiding repetition. This is achieved by considering both the probabilities predic‐
ted by the model and the similarity with the context. This can be controlled via
penalty_alpha and top_k.4

If all this sounds too empirical, it’s because it is. Generation is an active area of
research, with new papers coming up with different proposals, such as more sophisti‐
cated filtering. We’ll briefly discuss these in the final chapter. No single rule works for
all models, so it’s always important to experiment with different techniques.

Zero-Shot Generalization
Generating language is a fun and exciting application of transformers, but writing
fake articles about unicorns is not the reason they are so popular.5 To predict the
next token well, these models must learn a fair amount about the world. We can take
advantage of this to perform various tasks. For example, instead of training a model
dedicated to translation, we can prompt a sufficiently powerful LM with an input like
this:

28 | Chapter 2: Transformers

https://oreil.ly/VFc42
https://oreil.ly/VFc42
https://oreil.ly/Nz0C7
https://oreil.ly/bH8AJ


Translate the following sentence from English to French:
Input: The cat sat on the mat.
Translation:

I typed this example with GitHub Copilot active, and it helpfully suggested “Le chat
était assis sur le tapis” as a continuation of the prompt—a perfect illustration of how
an LM can perform tasks not explicitly trained for. The more powerful the model,
the more tasks it can perform without additional training. This flexibility makes
transformers quite powerful and has made them so popular in recent years.

To check this in action for ourselves, let’s use Qwen as a classification model. Specifi‐
cally, we’ll classify movie reviews as positive or negative—a classic benchmark task in
the NLP field. We’ll use a zero-shot approach to make things interesting, which means
we won’t provide the model with any labeled data. Instead, we’ll prompt the model
with the text of a review and ask it to predict the sentiment.

We can use a generative model as a classifier in multiple ways. Usually, we begin
by inserting the movie review into a prompt template that provides context for the
model. This prompt template could instruct the model to simply return the sentiment
of the review (and ask to limit it as positive or negative). An alternative trick,
especially needed with a small model like GPT-2 or the small Qwen, is to look at
its prediction for the next token and find out which possible token is assigned a
higher probability: positive or negative? Let’s go with this approach and find the
IDs corresponding to those tokens:

# Check the token IDs for the words ' positive' and ' negative'
# (note the space before the words)
tokenizer.encode(" positive"), tokenizer.encode(" negative")

([6785], [8225])

Once we have the IDs, we can run inference with the model and generate a label
based on the probabilities:

def score(review):
    """Predict whether it is positive or negative

    This function predicts whether a review is positive or negative
    using a bit of clever prompting. It looks at the logits for the
    tokens ' positive' and ' negative', and returns the label
    with the highest score.
    """
    prompt = f"""Question: Is the following review positive or
negative about the movie?
Review: {review} Answer:"""

    input_ids = tokenizer(prompt, return_tensors="pt").input_ids 
    final_logits = model(input_ids).logits[0, -1] 

A Language Model in Action | 29



    if final_logits[6785] > final_logits[8225]: 
        print("Positive")
    else:
        print("Negative")

Tokenize the prompt.

Get the logits for each token in the vocabulary. Note that we’re using model()
rather than model.generate(), as model() returns the logits for each token in
the vocabulary, while model.generate() returns only the chosen token.

Check if the logit for the positive token is higher than the logit for the negative
token.

We can try out this zero-shot classifier on a few fake reviews to evaluate how it does:

score("This movie was terrible!")

Negative

score("That movie was great!")

Positive

score("A complex yet wonderful film about the depravity of man")  # A mistake

Negative

In the GitHub repo for this book, you’ll find a dataset of labeled reviews and code to
assess the accuracy of this zero-shot approach. Can you tweak the prompt template
to improve the model’s performance? Can you think of other tasks that could be
performed using a similar approach?

The zero-shot capabilities of recent models have been a game-changer. As the models
improve, they can perform more tasks out-of-the-box, making them more accessible
and easier to use and reducing the need for specialized models for each task.

Few-Shot Generalization
Despite the release of ChatGPT and the quest for the perfect prompts, zero-shot
generalization (or prompt tuning) is not the only way to bend powerful LMs to
perform arbitrary tasks.

Zero-shot is the extreme application of a technique called few-shot generalization, in
which we provide the LM with a few examples about the task we want it to perform
and then ask it to provide similar answers for us. Instead of training the model, we
show some examples to influence generation by increasing the probability that the
continuation text follows the same structure and pattern as our prompt. Let’s try an

30 | Chapter 2: Transformers

https://oreil.ly/handsonGenAIcode


example. Apart from providing examples, providing a short description of what the
model should do, e.g., “Translate English to Spanish”, will help with higher-quality
generations:

prompt = """\
Translate English to Spanish:

English: I do not speak Spanish.
Spanish: No hablo español.

English: See you later!
Spanish: ¡Hasta luego!

English: Where is a good restaurant?
Spanish: ¿Dónde hay un buen restaurante?

English: What rooms do you have available?
Spanish: ¿Qué habitaciones tiene disponibles?

English: I like soccer
Spanish:"""
inputs = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(
    inputs,
    max_new_tokens=10,
)

print(tokenizer.decode(output[0]))

Translate English to Spanish:

English: I do not speak Spanish.
Spanish: No hablo español.

English: See you later!
Spanish: ¡Hasta luego!

English: Where is a good restaurant?
Spanish: ¿Dónde hay un buen restaurante?

English: What rooms do you have available?
Spanish: ¿Qué habitaciones tiene disponibles?

English: I like soccer
Spanish: Me gusta el fútbol

English:

A Language Model in Action | 31



We state the task we want to achieve and provide four examples to set the context for
the model. Hence, this is a four-shot generalization task. Then we ask the model to
generate more text to follow the pattern and provide the requested translation. Here
are some ideas to explore:

• Would this work with fewer examples?•
• Would it work without the task description?•
• How about other tasks?•
• How do GPT-2 and SmolLM score in this setting?•

GPT-2, given its size and training process, is not very good at
few-shot tasks, and it’s even worse at zero-shot generalization. How
is it possible you could have used it for sentiment classification
as in the previous section? We cheated a bit: we didn’t look at
the text generated by the model, but just checked whether the
probability for " positive" was larger than the " negative"

probability. Understanding how models work under the hood can
unlock powerful applications even with small models. Remember
to think about your problem; don’t be afraid to explore.

GPT-2 and Qwen 0.5B are examples of base models. Some base models in the style
of Qwen have zero-shot and few-shot capabilities that we can use at inference time.
Another approach is to fine-tune a model: we take the base model and keep training
it a bit longer on domain- or task-specific data. We don’t always need the extreme
generalization capabilities showcased by the most powerful models in the world; if
you only want to solve a particular task, it will usually be cheaper and better to
fine-tune and deploy a smaller model specialized on a single task.

It’s also important to note that base models are not conversational; although you can
write a nice prompt that will help make a chatbot with a base model, it’s often more
convenient to fine-tune the base model with conversational data, hence improving
the conversational capabilities of the model. That’s precisely what we’ll do in Chap‐
ter 6. Recent LLM releases tend to include both a base model and an official model
with conversational capabilities. In the case of the small Qwen model, this would be
Qwen2-0.5B-Instruct.

32 | Chapter 2: Transformers

https://oreil.ly/WO2QB


A Transformer Block
After our brief experiments using LMs, we are ready to introduce an architecture
diagram for transformer-based language-generation models shown in Figure 2-9.

Figure 2-9. Architecture of a transformer-based language model

A Transformer Block | 33



The high-level pieces involved include the following:

Tokenization
The input text is broken into individual tokens. Each token has a corresponding
ID used to index the token embeddings.

Input token embedding
The tokens are represented as vectors called embeddings. These embeddings serve
as numerical representations that capture basic information of each token. You
can think of vectors as a (long) list of numbers, where each number corresponds
to a particular aspect of the token’s meaning. During training, a model learns
how to map each token to its corresponding embedding. The token embedding
will always be the same for each token, regardless of its position in the input
sequence.

Positional encoding
The transformer model has no notion of order, so we need to enrich the token
embeddings with positional information. This is done by adding a positional
encoding to the token embeddings. This encoding is a set of vectors that encode
the position of each token in the input sequence. This allows the model to
differentiate between tokens based on their position in the sequence, which can
be useful as the same token appearing in different places can have different
meanings.

Transformer blocks
The core of the transformer model is the transformer block. The power of
transformers comes from stacking multiple blocks, allowing the model to learn
increasingly complex and abstract relationships between the input tokens. It
consists of two main components:

Self-attention mechanism
This mechanism allows the model to weigh the importance of each token
in the context of the entire sequence. It helps the model understand the
relationships between tokens in the input. The self-attention mechanism is
the key to the transformer’s ability to handle long-range dependencies and
complex relationships between words, and it helps generate coherent and
contextually appropriate text.

Feed-forward neural network
The self-attention output is passed through a feed-forward neural network,
which further refines the representation of the input sequence.

34 | Chapter 2: Transformers



Contextual embeddings
The output of the transformer block is a set of contextual embeddings that
capture the relationships between tokens in the input sequence. Unlike the
input embeddings, which are fixed for each token, the contextual embeddings
are updated at each layer of the transformer model based on the relationships
between tokens. The embeddings capture rich and complex semantic informa‐
tion about the token in the context in which it appears.

Prediction
An additional layer processes the final representation into a task-dependent final
output. In the case of text generation, this involves having a linear layer that
maps the contextual embeddings to the vocabulary space, followed by a softmax
operation to predict the next token in the sequence.

Of course, this is a simplification of the transformer architecture. Diving into the
internals of how self-attention works or the internals of the transformer block is
beyond the scope of this book. However, understanding the high-level architecture
of a transformer model can be helpful to grasp how these models work and how
they can be applied to various tasks. This architecture has enabled transformers to
achieve unprecedented performance in various tasks and domains, and you’ll find
them cropping up again and again—not only in the rest of this book, but also in the
discipline as a whole.

Transformer Model Genealogy
At the beginning of the chapter, we experimented with Qwen to autoregressively
generate text. Qwen, an example of a decoder-based transformer, has a single stack of
transformer blocks that process an input sequence. This is a popular approach today,
but other architectures have been developed over the years. This section provides a
brief overview of the genealogy of transformer models.

Sequence-to-Sequence Tasks
The original transformer paper used a seemingly more complicated architecture
called the encoder-decoder architecture (Figure 2-10). Although the encoder-decoder
architecture was popular until 2023, it has been superseded by decoders in most
research labs.

Transformer Model Genealogy | 35

https://arxiv.org/abs/1706.03762


Figure 2-10. The encoder-decoder transformer (adapted from an image in the original
transformer paper)

The transformer paper focused on machine translation as the example sequence-to-
sequence task. The best results in machine translation at the time were achieved by
RNNs, such as long short-term memory (LSTM) and gated recurrent units (GRUs)—
don’t worry if you’re unfamiliar with them. The paper demonstrated better results by
focusing solely on the attention method and showed that scalability and training were
much easier. Important factors like excellent performance, stable training, and easy
scalability are why transformers took off and were adapted to multiple tasks, as the
next section explores in more depth.

36 | Chapter 2: Transformers

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


In encoder-decoder models, like the original transformer model described in the
paper, one stack of transformer blocks, called the encoder, processes an input
sequence into a set of rich representations, which are then fed into another stack
of transformer blocks, called the decoder, that decodes them into an output sequence.
This approach to convert one sequence into a different one is called sequence-to-
sequence, or seq2seq, and is naturally well suited for tasks such as translation, summa‐
rization, or question answering.

For example, you feed an English sentence through the encoder of a translation
model, which generates a rich embedding that captures the meaning of the input.
Then the decoder generates the corresponding French sentence by using this embed‐
ding. The generation happens in the decoder one token at a time, as we saw when
generating sequences earlier in the chapter. However, the predictions for each suc‐
cessive token are informed not just by the previous tokens in the sequence being
generated but also by the output from the encoder.

The mechanism by which the output from the encoder side is incorporated into the
decoder stack is called cross-attention. It resembles self-attention, except that each
token in the input (the sequence being processed by the decoder) attends to the con‐
text from the encoder rather than other tokens in its sequence. The cross-attention
layers are interleaved with self-attention, allowing the decoder to use both contexts
within its sequence and the information from the encoder.

After the transformer paper, existing sequence-to-sequence models, such as Marian
NMT, incorporated these techniques as a central part of their architecture. New
models were developed using these ideas. A notable one is BART (short for Bidir‐
ectional and Auto-Regressive Transformers). During pretraining, BART corrupts
input sequences and attempts to reconstruct them in the decoder output. Afterward,
BART is fine-tuned for other generation tasks, such as translation or summarization,
leveraging the rich sequence representations achieved during pretraining. Input cor‐
ruption, by the way, is one of the key ideas behind diffusion models, as we’ll discuss in
Chapter 4.

Encoder-Only Models
As we’ve discussed, the original transformer model was based on an encoder-decoder
architecture that has been further explored in models such as BART or T5. In addi‐
tion, the encoder or the decoder can be trained and used independently, giving rise to
distinct transformer families. The first sections of this chapter explored decoder-only,
or autoregressive models. These models are specialized in text generation using the
techniques we described and have shown impressive performance, as demonstrated
by ChatGPT, Claude, Llama, and Gemma.

Encoder models, on the other hand, are specialized in obtaining rich representations
from text sequences and can be used for tasks such as classification or to prepare

Transformer Model Genealogy | 37

http://arxiv.org/abs/1910.13461


semantic embeddings for a multitude of documents that can be used in retrieval
systems. The best-known transformer encoder model is probably BERT, which intro‐
duced the masked LM objective that was later picked up and further explored by
BART.

Causal language modeling predicts the next token given the previous ones—it’s what
we did with Qwen. The model can attend to only the context on the left of a
given token. A different approach used in encoder models is called masked language
modeling (MLM). MLM, proposed in the famous BERT paper, pretrains a model to
learn to “fill in the blanks.” Given an input text, we randomly mask some tokens,
and the model must predict the hidden tokens, as shown in Figure 2-11. Unlike
causal language modeling, MLM uses both the sequence at the masked token’s left
and right, hence the B of Bidirectional in BERT’s name. This helps create strong
representations of the given text. Under the hood, these models use the encoder part
of the transformer’s architecture.

We just discussed encoder-decoder and decoder-only architectures. A common ques‐
tion is why one might need an encoder-decoder model for tasks like translation if
decoder-only models like Qwen and Llama can show good results. Encoder-decoder
models are designed to translate an entire input sequence to an output sequence,
making them well-suited for translation. In contrast, decoder-only models focus
on predicting the next token in a sequence. Initially, decoder-only models like
GPT-2 were less capable in zero-shot learning scenarios than more recent models
like GPT-4, but this was due to more than just the absence of an encoder. The
improvement in zero-shot capabilities in advanced models like GPT-4 is also due
to larger training data, better training techniques, and increased model sizes. While
encoders in seq2seq models play a crucial role in understanding the full context
of input sequences, advancements in decoder-only models have made them more
effective and versatile, even for tasks traditionally relying on seq2seq models.

Let’s look at some code. Rather than using the AutoModel and AutoTokenizer classes
we used before, let’s introduce a higher-level transformers API called pipeline. This
API allows you to easily load a model for a given task. The pipeline API takes care of
all the pre- and post-processing, and hence, it’s a great way to quickly try out models:

from transformers import pipeline

fill_masker = pipeline("fill-mask", model="bert-base-uncased")
fill_masker("The [MASK] is made of milk.")

[{'score': 0.19546695053577423,
  'token': 9841,
  'token_str': 'dish',
  'sequence': 'the dish is made of milk.'},
 {'score': 0.1290755718946457,
  'token': 8808,
  'token_str': 'cheese',

38 | Chapter 2: Transformers

http://arxiv.org/abs/1810.04805


  'sequence': 'the cheese is made of milk.'},
 {'score': 0.10590697824954987,
  'token': 6501,
  'token_str': 'milk',
  'sequence': 'the milk is made of milk.'},
 {'score': 0.04112089052796364,
  'token': 4392,
  'token_str': 'drink',
  'sequence': 'the drink is made of milk.'},
 {'score': 0.03712352365255356,
  'token': 7852,
  'token_str': 'bread',
  'sequence': 'the bread is made of milk.'}]

It’s good to know that the milk is made of milk! What happens under the hood? The
encoder receives the input sequence and generates a contextualized representation for
each token. This representation is a vector of numbers that captures the meaning of
the token in the context of the entire sequence. The encoder is usually followed by a
task-specific layer that uses the representations to perform tasks such as classification,
question answering, or masked language modeling, as shown in Figure 2-11. The
encoder is trained to generate representations that are useful for tasks that require a
good understanding of the input.

Figure 2-11. Encoder models output semantic embeddings that can be used to solve tasks
such as predicting a token in the middle of a sequence

Between encoder-only, decoder-only, and encoder-decoder models, companies and
research labs have released a large number of new open and closed language models,
such as GPT-4, Mistral, Falcon, Llama, Qwen, Yi, Claude, Bloom, Gemma, and hun‐
dreds more. Figure 2-12 presents a nonexhaustive genealogy of transformer models,
showing their fruitful impact on the NLP landscape as of 2024.

Transformer Model Genealogy | 39



Figure 2-12. A timeline of open encoder-only (red), encoder-decoder (green), and
decoder-only (blue) model releases

The Power of Pretraining
Having access to existing models is quite powerful. Transformer models have shown
SOTA performance across many other language tasks, such as text classification,
machine translation, and answering questions based on an input text. Why do trans‐
formers work so well?

40 | Chapter 2: Transformers



The first insight is the usage of the attention mechanism, as hinted at across the chap‐
ter. Attention mechanisms allow the transformer model to attend to long sequences
and learn long-range relationships. In other words, transformers can estimate the
relevance of some tokens to other tokens.

The second key aspect is their ability to scale. The transformer architecture has
an implementation optimized for parallelization, and research has shown that these
models can scale to handle high-complexity and high-scale datasets. Although ini‐
tially designed for text data, the transformer architecture can be flexible enough to
support different data types and handle irregular inputs.

The third key insight is the ability to do pretraining and fine-tuning. Traditional
approaches to a task, such as movie-review classification, were limited by the avail‐
ability of labeled data. A model would be trained from scratch on a large corpus of
labeled examples, attempting to predict the label from the input text directly. This
approach is often referred to as supervised learning. However, it has a significant
drawback: it requires a large amount of labeled data to train effectively. This is a
problem because labeling data is expensive and time-consuming. There might not
even be any available data in many domains.

To address this need for a large amount of labeled data, researchers began looking
for a way to pretrain models on existing data that could then be fine-tuned (or
adjusted) for a specific task. This approach is known as transfer learning and is the
foundation of modern ML in many fields, such as NLP and Computer Vision. Initial
works in NLP focused on finding domain-specific corpora for the LM pretraining
phase, but papers such as ULMFiT showed that even pretraining on generic text
such as Wikipedia could yield impressive results when the models were fine-tuned
on downstream tasks, such as sentiment analysis or question answering. This set
the stage for the rise of transformers, which turned out to be highly well suited for
learning rich representations of language.

The idea of pretraining is to train a model on a large unlabeled dataset and then
fine-tune it to a new target task, for which one would require much less labeled
data (Figure 2-13). Before graduating to NLP, transfer learning had already been very
successful with the CNNs that form the backbone of modern Computer Vision. In
this scenario, one first trains a large model with a massive amount of labeled images
in a classification task. Through this process, the model learns common features that
can be leveraged on a different but related problem. For example, we can pretrain a
model on thousands of classes and then fine-tune it to classify whether a picture is
that of a hot dog.

The Power of Pretraining | 41

http://arxiv.org/abs/1801.06146


Figure 2-13. While pretraining a base model can require a significant amount of
resources, fine-tuning an existing model on a new task or domain is significantly cheaper

With transformers, things are taken further with self-supervised pretraining (training
with unlabeled data). We can pretrain a model on large, unlabeled text data. How?
Let’s think about causal models such as GPT. The model predicts which is the next
token. Well, we don’t need any labels to obtain training data! Given a corpus of text,
we can mask the tokens after a sequence and train the model to learn to predict
them. As in the Computer Vision case, pretraining gives the model a meaningful
representation of the underlying text. We can then fine-tune the model to perform
another task, such as generating text in the style of our tweets or a specific domain
(e.g., your company chat). Given the model has already learned a representation of
language, fine-tuning will require much less data than if we trained from scratch.

For many tasks, a rich representation of the input is more important than being able
to predict the next token. For example, if you want to fine-tune a model to predict
the sentiment of a movie review, MLMs would be more powerful. Models such as
GPT-2 are designed to optimize for text generation rather than for building powerful
representations of the text. On the other hand, models such as BERT are ideal for this
task. As briefly mentioned before, the last layer of an encoder model outputs a dense
representation of the input sequence, called embedding. This embedding can then be
leveraged by adding a small, simple network on top of the encoder and fine-tuning
the model for the specific task. As a concrete example, we can add a simple linear
layer on top of the BERT encoder output to predict the sentiment of a document. We
can take this approach to tackle a wide range of tasks:

Token classification
Identify each entity in a sentence, such as a person, location, or organization.

42 | Chapter 2: Transformers



6 This oversimplifies how semantic search works, but we’ll get a chance to build a simple search system using
semantic embeddings in “Challenges” on page 52. This is the core of retrieval-augmented generation.

7 DistilBERT is a smaller model that preserves 95% of the original BERT performance while having 40% fewer
parameters. RoBERTa is a powerful BERT-based model trained for longer with different hyperparameters.

Extractive question answering
Given a paragraph, answer a specific question and extract the answer from the
input.

Semantic search
The features generated by the encoder can be handy to build a search system.
Given a database of a hundred documents, we can compute the embeddings
for each. Then, we can compare the input embeddings with the documents’
embeddings at inference time, hence identifying the most similar document in
the database.6

The preceding list is not exhaustive and also includes text similarity, anomaly detec‐
tion, named entity linking, recommendation systems, and document classification.

Let’s use a BERT-based model that was fine-tuned to perform sequence classification
to determine whether the sentiment of a text is positive or negative. Once again, we’ll
use the pipeline API to load the model and perform the classification:

from transformers import pipeline

classifier = pipeline(
    "text-classification",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
)
classifier("This movie is disgustingly good!")

[{'label': 'POSITIVE', 'score': 0.9998536109924316}]

This classification model can analyze reviews and predict their sentiment, as we did
in “Zero-Shot Generalization” on page 28 and “Few-Shot Generalization” on page 30.
“Challenges” on page 52 shows how to evaluate classification models and compare a
zero-shot setup and this fine-tuned model.

Transformers Recap
We’ve discussed three types of architectures:

Encoder-based architectures
Encoder-based architectures such as BERT, DistilBERT, and RoBERTa are ideal
for tasks that require understanding the entire input.7 These models output
contextualized embeddings that capture the meaning of the input sequence. We

Transformers Recap | 43



can then add a small network on top of these embeddings and train it for a new
specific task that relies on the semantic information.

Decoder-based architectures
Decoder-based architectures such as GPT-2, Qwen, Gemma, and Llama are ideal
for new text generation.

Encoder-decoder architectures
Encoder-decoder architectures, or seq2seq, such as BART and T5, are great for
tasks that require generating new sentences based on a given input, such as
summarization or translation.

“Wait,” you might say, “I can handle all these tasks with ChatGPT or Llama.” That’s
true. Given the vast and growing amount of training data, computing power, and
training optimizations, the quality of generative models has significantly improved.
Their zero-shot capabilities have come a long way compared to those of a few years
ago.

There are two main schools of thought here. One perspective is that, given the
resources, fine-tuning a model for your specific task and domain will yield better
results than using a generalist pretrained model. For example, if you want to use
a GPT-like model to generate character dialogues in real time within a game, fine-
tuning it with similar data beforehand might improve performance. Similarly, if you
need a model to extract entities from a dataset of chemistry papers, it might make
sense to fine-tune an encoder-based model with relevant chemistry texts.

On the other hand, with the rise of high-quality, low-cost generalist models that
perform well across a variety of tasks, some argue that fine-tuning might be unneces‐
sary for most use cases. Instead, prompt engineering could be a more effective and
cheaper approach.

Seq2seq models were initially successful because they can encode variable-length
input sequences into embeddings that summarize the input information. The decoder
then uses this context to generate output. Recently, decoder-only models have gained
popularity because of their simplicity, scalability, efficiency, and parallelization. In
practice, different types of models are employed depending on the task; there’s no
single “golden” model that works for everything.

With over a million open models, you might wonder which one to use. Chapter 6
will help you navigate this landscape, providing guidelines on how to choose the right
model for your task and requirements as well as how to fine-tune a model for your
specific needs.

44 | Chapter 2: Transformers



8 We can cache things to avoid processing tokens from scratch. Even then, for each new token, the model must
attend to all the previous tokens.

Limitations
At this point, you might wonder about potential issues with transformers. Let’s briefly
go over some of the limitations:

Transformers are very large
Research has consistently shown that larger models perform better. Although
that’s quite exciting, it also brings concerns. First, some of the most powerful
models require tens of millions of US dollars to train—just in computing power.
That means that only a small set of institutions can train very large base mod‐
els, limiting the kind of research that institutions without those resources can
do. Second, using such amounts of computing power can also have ecological
implications—those millions of GPU hours are, of course, powered by lots of
electricity. Third, even if some of these models are open source, running them
might require many GPUs. Chapter 6 will explore some techniques to use these
LLMs even if you don’t have multiple GPUs at home. Even then, deploying them
in resource-constrained environments is a frequent challenge.

Sequential processing
If you recall the decoder section, we had to process all the previous tokens for
each new token. That means that generating the 10,000th token in a sequence
will take considerably longer than generating the initial one.8 In computer sci‐
ence terms, transformers have quadratic time complexity with respect to the
input length. This means that as the length of the input increases, the time
taken for processing grows quadratically, making it challenging to scale them to
very long documents or use these models in some real-time scenarios. While
transformers excel in many tasks, their computational demands require careful
consideration and optimization when being used in production. That said, there
has been a lot of research on making transformers more efficient for extremely
long sequences, such as clever caching techniques, ring attention, and Infini-
attention.

Fixed input size
Transformer models can handle a maximum number of tokens, which depends
on the base model. The number of tokens the model can attend to is called the
context window, and it is essential to look into when picking a pretrained model.
You cannot simply pass entire encyclopedias to transformers, expecting they will
be able to summarize them, but this is changing quickly. While some pretrained
models can handle up to only 512 tokens, having models that can handle up
to 32,000 tokens is more common nowadays. New techniques allow scaling to

Transformers Recap | 45



9 Among the lines of research on this, using sparse AutoEncoders to extract interpretable features from
transformers is becoming increasingly popular.

hundreds of thousands or even millions of tokens! For example, Llama 3.1 can
handle 131,000 tokens, which is close to the length of this book!

Limited interpretability
Transformers are often criticized for their lack of interpretability.9

All of these limitations are active research areas. People have been exploring how to
train and run models with less computing power (e.g., QLoRA, which we’ll explore
in Chapter 6), make generation faster (e.g., Flash Attention and assisted generation),
enable unconstrained input sizes (e.g., RoPE and attention sinks), and interpret the
attention mechanisms.

One big concern is the presence of biases in models. If the training data used to
pretrain transformers contains biases, the model can learn and perpetuate them. This
is a broader issue in ML but is especially relevant to transformers. Let’s revisit the
fill-mask pipeline. Let’s say we want to predict the most likely profession. As you
can check out in the following example, the results differ if we use the word “man”
versus “woman”:

unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK] during summer.")
print([r["token_str"] for r in result])

result = unmasker("This woman works as a [MASK] during summer.")
print([r["token_str"] for r in result])

['farmer', 'carpenter', 'gardener', 'fisherman', 'miner']
['maid', 'nurse', 'servant', 'waitress', 'cook']

Why does this happen? To enable pretraining, researchers usually require large
amounts of data, leading to scraping all the content they can find. This content
might be of all kinds of quality, including toxic content (which can be, to some extent,
filtered out). The base model might end up engraining and perpetuating these biases
when being fine-tuned. Similar concerns exist for conversational models, where the
final model might generate toxic content learned from the pretraining dataset.

Beyond Text
Transformers have been used for many tasks representing data as text. A clear exam‐
ple is code generation: rather than training an LM with English data, we can use lots
of code, and, by the same principles we just learned, it will learn how to autocomplete
code. Another example is using transformers to answer questions from a table, such
as a spreadsheet.

46 | Chapter 2: Transformers

https://arxiv.org/abs/2406.04093


As transformer models have been so successful in the text domain, considerable
interest has sparked in other communities to adapt these techniques to other modal‐
ities. This has led to transformer models being used for tasks such as image recogni‐
tion, segmentation, object detection, video understanding, and more, as shown in
Figure 2-14.

Figure 2-14. Transformer models can be used for tasks such as classifying images,
detecting objects, and segmenting images

CNN have been widely used as the go-to SOTA models for most Computer Vision
techniques. With the introduction of Vision Transformers (ViTs), there has been
a switch in recent years to explore how to tackle vision tasks with attention
and transformer-based techniques. ViTs don’t discard CNNs entirely: in the image-
processing pipeline, CNNs extract feature maps of the image to detect high-level
edges, textures, and other patterns. The feature maps obtained from the CNNs are
then divided into fixed-size, nonoverlapping patches. These patches can be treated
similarly to a sequence of tokens, so the attention mechanism can learn the relation‐
ships between patches in different places.

Unfortunately, ViTs required more data (300 million images!) and compute than
CNNs to get good results. Further work has happened in recent years; for example,
the DeiT model was able to leverage a transformer-based architecture with midsized

Transformers Recap | 47

http://arxiv.org/abs/2010.11929


datasets (1.2 million images) thanks to using augmentation and regularization tech‐
niques common in CNNs. Other models such as DETR, SegFormer, and Swin
Transformer have pushed the field further, supporting many tasks such as image
classification, object detection, image segmentation, video classification, document
understanding, image restoration, super-resolution, and others.

A powerful example of transformer-based image models is zero-shot image classifica‐
tion. Unlike traditional image classifiers that are trained on a fixed set of classes,
zero-shot image classification allows the specification of classes at inference time.
This provides the flexibility to use a single model for various image-classification
tasks, even those it was not explicitly trained for. To demonstrate, let’s start by loading
an image by using the PIL library, a widely used tool for vision-related preprocessing:

import requests
from PIL import Image

from genaibook.core import SampleURL

# Download an image and load it with the PIL library
url = SampleURL.CatExample
image = Image.open(requests.get(url, stream=True).raw)
image

Now, let’s use the high-level pipeline to use a model for the given task:

pipe = pipeline(
    "zero-shot-image-classification", model="openai/clip-vit-base-patch32"
) 

48 | Chapter 2: Transformers



labels = ["cat", "dog", "zebra"] 
pipe(image, candidate_labels=labels) 
image

[{'score': 0.9936687350273132, 'label': 'cat'},
 {'score': 0.006043245084583759, 'label': 'dog'},
 {'score': 0.0002880473621189594, 'label': 'zebra'}]

Load the openai/clip-vit-base-patch32 model.

Define the classes we want to use at inference time.

Pass the image and labels through the pipeline to get the model predictions.

As we’ll explore in Chapter 9, transformer models can also be used for audio tasks,
such as transcribing audio or generating synthetic speech or music. Under the hood,
the same fundamental principles of pretraining and attention mechanisms persist,
but each modality has different data types, requiring different approaches and modi‐
fications.

Other modalities where transformers are being explored are as follows:

Graphs
An excellent introductory read is “Introduction to Graph Machine Learning” by
Clémentine Fourrier. Using transformers for graphs is still very exploratory, but
there are some exciting early results. Some examples of tasks that involve graph
data are predicting the toxicity of molecules, predicting the evolution of systems,
or generating new plausible molecules.

3D data
Performing segmentation of data that can be represented in 3D, such as LiDAR
point clouds in autonomous driving or CT scans for organ segmentation.
Another example is estimating an object’s six degrees of freedom, which can
be helpful in robotics applications.

Time series
Analyzing stock prices or performing weather forecasting.

Multimodal
Some transformer models are designed to process or output multiple types of
data (such as text, images, and audio) together. This opens up new possibilities,
such as multimodal systems where you can speak, write, or provide pictures
and have a single model to process them. Another example is visual question
answering, where a model can answer questions about provided images.

Transformers Recap | 49

https://oreil.ly/Q2tPc
https://oreil.ly/TK9vt


Project Time: Using LMs to Generate Text
We used the generate() method in “Generating Text” on page 20 to perform various
decoding techniques. To better understand how it works under the hood, it’s time to
implement it ourselves. We’ll use generate() as a reference but implement it from
scratch.

Your goal is to fill the code in the following function. Rather than use model
.generate(), the idea is to iteratively call model(), passing the previous tokens as
input. You have to implement greedy search when do_sample=False, sampling when
do_sample=True, and Top-K sampling when do_sample=True and top_k is not None.
This will be a challenging task, so do not worry if you don’t come up with a solution
quickly. We suggest you begin implementing greedy search and then build on top
of it:

def generate(
    model, tokenizer, input_ids, max_length=50, do_sample=False, top_k=None
):
    """Generate a sequence without using model.generate()

    Args:
        model: The model to use for generation.
        tokenizer: The tokenizer to use for generation.
        input_ids: The input IDs
        max_length: The maximum length of the sequence.
        do_sample: Whether to use sampling.
        top_k: The number of tokens to sample from.
    """
    # Write your code here
    # Begin by the simplest approach, greedy decoding.
    # Then add sampling and finally top-k sampling.

Summary
You now have learned to load and use transformers for various tasks. This chapter
also covered how transformer models sequence data such as text and how this prop‐
erty lets them learn valuable representations that we can use to generate or classify
new sequences. As the scale of these models increases, so do their capabilities—to
the point where massive models with hundreds of billions of parameters can now
perform many tasks previously thought impossible for computers.

We can pick powerful existing pretrained models and modify them for specific
domains and use cases thanks to fine-tuning. The trend toward larger and more
capable models has caused a shift in how people use them. Task-specific models
are often outcompeted by general-purpose LLMs, and most people now interact
with these models via APIs, hosted solutions, and local deployments or directly via
slick chat-based user interfaces. At the same time, the release of large and powerful

50 | Chapter 2: Transformers



open-access models such as Llama has sparked a strong movement among research‐
ers and practitioners to run high-quality models directly on consumer computers,
resulting in privacy-first solutions. This trend extends beyond inference: novel train‐
ing approaches that allow individuals to fine-tune these models without many com‐
putational resources have emerged in recent years. Chapter 6 explores this further
and dives into both traditional and novel fine-tuning techniques.

Although we covered how transformers work and we’ll dive into their training,
exploring the internals of these models (for example, the math behind attention
mechanisms) or how to pretrain a model from scratch is outside the scope of this
book. Luckily for us, there are excellent resources to learn about this:

• “The Illustrated Transformer” by Jay Alammar is a beautiful visual guide that•
explains transformers in a detailed and intuitive way.

• We recommend reading Natural Language Processing with Transformers by Lewis•
Tunstall et al. (O’Reilly) if you want to dive deeper into the internals of fine-
tuning these models for multiple specific tasks.

• Hugging Face has a free, open source course that teaches how to solve different•
NLP tasks.

If you want to dive more into the GPT family of models, we suggest reviewing the
following papers:

“Improving Language Understanding by Generative Pre-training”
This is the original GPT paper, published in 2018 by Alec Radford et al. It
introduced the idea of using a transformer-based model pretrained on a large
corpus of text to learn general language representations and then fine-tuning
it on specific downstream tasks. The paper also showed that the GPT model
achieved SOTA results on several natural language understanding benchmarks at
the time.

“Language Models Are Unsupervised Multitask Learners”
Published in 2019 by Alec Radford et al., this paper presented GPT-2, a
transformer-based model with 1.5 billion parameters pretrained on a large cor‐
pus of web text called WebText. The paper also demonstrated that GPT-2 could
perform well on various natural language tasks without fine-tuning, such as text
generation, summarization, translation, reading comprehension, and common‐
sense reasoning. Finally, it discussed large-scale LMs’ potential ethical and social
implications.

“Language Models Are Few-Shot Learners”
Published in 2020 by Tom B. Brown and others, this paper shows that scaling up
LMs dramatically improves their ability to perform new language tasks from only
a few examples or simple instructions without fine-tuning or gradient updates.

Summary | 51

https://oreil.ly/FL3cz
https://learning.oreilly.com/library/view/natural-language-processing/9781098136789
http://hf.co/course
https://oreil.ly/ND5Bk
https://oreil.ly/m5bBi
http://arxiv.org/abs/2005.14165


The paper also presents GPT-3, an autoregressive LM with 175 billion parame‐
ters, which achieves strong performance on many NLP datasets and tasks.

Exercises
1. What’s the role of the attention mechanism in text generation?1.
2. In which cases would a character-based tokenizer be preferred?2.
3. What happens if you use a tokenizer different from the one used with the model?3.
4. What’s the risk of using no_repeat_ngram_size when doing generation? (Hint:4.

Think of city names.)
5. What would happen if you combine beam search and sampling?5.
6. Imagine you’re using an LLM that generates code in a code editor by doing6.

sampling. What would be more convenient: a low temperature or a high temper‐
ature?

7. What’s the importance of fine-tuning, and why is it different from zero-shot7.
generation?

8. Explain the differences and applications of encoder, decoder, and encoder-8.
decoder transformers.

You can find the solutions to these exercises and the following challenges in the
book’s GitHub repository.

Challenges
1. Summarization. Use a summarization model (you can use pipeline("summariza1.

tion")) to generate summaries of a paragraph. How does it compare with the
results of using zero-shot? Can it be beaten by providing few-shot examples?

2. Sentiment analysis. In the zero-shot supplementary material, we calculate2.
some metrics using zero-shot classification. Explore using the distilbert-base-
uncased-finetuned-sst-2-english encoder model that can do sentiment analy‐
sis. What results do you get?

3. Semantic search. Let’s build an FAQ system! Sentence transformers are powerful3.
models that can measure semantic text similarity. While the transformer encoder
usually outputs an embedding for each token, sentence transformers output an
embedding for the whole input text, allowing us to determine if two texts have
similar meanings based on their similarity score. Let’s look at a simple example
using the sentence_transformers library:

52 | Chapter 2: Transformers

https://oreil.ly/handsonGenAIcode


from sentence_transformers import SentenceTransformer, util

sentences = ["I'm happy", "I'm full of happiness"]
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

# Compute embedding for both lists
embedding_1 = model.encode(sentences[0], convert_to_tensor=True)
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)

util.pytorch_cos_sim(embedding_1, embedding_2)

tensor([[0.6003]], device='cuda:0')

Write a list of five questions and answers about a topic. Your goal will be to build
a system that, given a new question, can give the user the most likely answer. How
can we use sentence transformers to solve this? The supplementary material contains
the solution, but, although challenging, we suggest that you try it first before looking
there.

A powerful technique called retrieval-augmented generation (RAG)
combines text generation and embeddings to retrieve relevant
documents. Appendix C shows an end-to-end example of how to
build a minimal RAG pipeline. Before that, we suggest reading
Chapter 6, which introduces fine-tuning and how to use it to adapt
models to specific tasks.

References
Brown, Tom B., et al. “Language Models Are Few-Shot Learners.” arXiv, July 22, 2020.

http://arxiv.org/abs/2005.14165.
Devlin, Jacob, et al. “BERT: Pre-Training of Deep Bidirectional Transformers for

Language Understanding.” arXiv, May 24, 2019. http://arxiv.org/abs/1810.04805.
Dosovitskiy, Alexey, et al. “An Image Is Worth 16x16 Words: Transformers for Image

Recognition at Scale.” arXiv, June 3, 2021. http://arxiv.org/abs/2010.11929.
Fourrier, Clémentine. “Introduction to Graph Machine Learning.” Hugging Face blog,

January 3, 2023. https://oreil.ly/TK9vt.
Gao, Leo, et al. “Scaling and Evaluating Sparse Autoencoders.” arXiv, June 6, 2024.

https://arxiv.org/abs/2406.04093.
Holtzman, Ari, et al. “The Curious Case of Neural Text Degeneration.” arXiv, Febru‐

ary 14, 2020. http://arxiv.org/abs/1904.09751.
Howard, Jeremy, and Sebastian Ruder. “Universal Language Model Fine-Tuning for

Text Classification.” arXiv, May 23, 2018. http://arxiv.org/abs/1801.06146.

References | 53

https://oreil.ly/handsonGenAIcode
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
https://oreil.ly/TK9vt
https://arxiv.org/abs/2406.04093
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1801.06146


Lan, Tian. “Generating Human-Level Text with Contrastive Search in Transformers
.” Hugging Face blog, November 8, 2022. https://oreil.ly/VFc42.

Lewis, Mike, et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension.” arXiv, October 29, 2019.
http://arxiv.org/abs/1910.13461.

Radford, Alec, et al. “Improving Language Understanding by Generative Pre-
training.” OpenAI Blog, June 11, 2018. https://oreil.ly/ND5Bk.

Radford, Alec, et al. “Language Models Are Unsupervised Multitask Learners.”
OpenAI Blog 1, no. 8 (2019): 9. https://oreil.ly/m5bBi.

Raffel, Colin, et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer.” arXiv, July 28, 2020. http://arxiv.org/abs/1910.10683.

Vaswani, Ashish, et al. “Attention Is All You Need.” arXiv, June 12, 2017. https://
arxiv.org/abs/1706.03762.

Yang, Jingfeng, et al. “Harnessing the Power of LLMs in Practice: A Survey on
ChatGPT and Beyond.” arXiv, April 27, 2023. http://arxiv.org/abs/2304.13712.

54 | Chapter 2: Transformers

https://oreil.ly/VFc42
http://arxiv.org/abs/1910.13461
https://oreil.ly/ND5Bk
https://oreil.ly/m5bBi
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2304.13712


CHAPTER 3

Compressing and Representing
Information

This chapter introduces ML models and techniques to learn efficient data representa‐
tions for tasks involving images, videos, or text. Why are efficient representations
important? We want to reduce the amount of information we need to store and
process while keeping the essential characteristics of the data. Rich representations
enable training models specialized on particular tasks, and making the representa‐
tions compact reduces the computational requirements to train and work with data-
intensive models. For example, training on a vector embedding of an image can be
more efficient and expressive than doing it directly on its pixels.

Traditional compression methods like ZIP or JPEG focus on specific data types and
use handcrafted algorithms to reduce file sizes. While these methods are effective
for their intended purposes, they lack the flexibility and adaptability of learned
compression techniques. ZIP, for instance, excels at lossless compression of general
data by identifying and encoding repetitive patterns. On the other hand, JPEG is
designed specifically for image compression and achieves significant size reduction
by discarding less noticeable visual information. However, these traditional methods
don’t learn from the data they compress and can’t automatically adapt to different
types of content or optimize for specific tasks beyond size reduction. This is where
ML models can be useful.

We’ll begin by exploring AutoEncoders, a family of ML models that consist of an
encoder that “compresses” data and a decoder that reconstructs it just by using
the representation. The encoder learns the essential features of the data it needs
to focus on, which allows the decoder to reverse the transformations, as shown in
the left panel of Figure 3-1. This training approach is a way to build compressors
automatically without relying on handcrafted algorithms. Compressing information

55



(even in a lossy way) is helpful in itself, but there are a few other interesting things we
can do once we have a compact dataset representation.

If our system is correctly trained and the decoder can recover the original from the
representations, it means that the learned representations have captured the essential
information. Therefore, operating on the representations is equivalent to working
with the originals but requires much less memory and computing. This is one of the
key design aspects of models such as Stable Diffusion—as we’ll see in Chapter 5, we
can generate and manipulate large images, but most of the computation happens in
the smaller latent space where representations reside.

Because the learned representations capture the essential information, we can split
the encoder and decoder after the AutoEncoder is trained and use the encoder as
a feature extraction component. Adding a small network on top of the encoder’s
outputs, as represented in the center panel of Figure 3-1, allows us to train the model
for different tasks, such as text or image classification. These small networks don’t
operate on the whole input image but on the essential characteristics obtained by the
encoder.

Figure 3-1. Efficient data representation methods (left) can be used for other tasks, such
as classification (middle), or to generate new content (right)

We can also encode different data types to the same latent space representations. As
we saw in Chapter 2, sequence-to-sequence LMs use an encoder-decoder architecture
to perform a wide variety of tasks, such as translation or summarization. Although

56 | Chapter 3: Compressing and Representing Information



there are more details to consider when designing such systems, one key insight is
that the encoder’s job is to capture the essential features that carry enough semantic
information about the input text. This works across modalities too: the job of an
image-captioning model, for example, is to translate image representations to textual
descriptions, using a latent space as the internal working data.

A final example of the use of AutoEncoders is for generative modeling (right panel of
Figure 3-1). After we have trained the encoder-decoder pair, we can throw away the
encoder and generate new data by sampling from a random distribution in the latent
space. This is the base of Variational AutoEncoders (or VAEs). We’ll see an example
of how it’s done in the second section of this chapter.

We’ll use image data to showcase how AutoEncoders and VAEs work, but the tech‐
niques can be applied to any data, not just images. The final section of this chapter
examines how multimodal representation learning systems, such as CLIP, bridge the
gap between text and images and can be used for very interesting use cases such as
semantic search, data filtering, text-to-image generation, and more.

AutoEncoders
AutoEncoders consist of two models stitched together—namely, an encoder and a
decoder, schematically represented in Figure 3-2. Both models are trained together
with the objective that the encoder produces intermediate representations, which the
decoder then uses to regenerate the input data. If training succeeds, the AutoEncoder
learns to extract key features from the input data.

Figure 3-2. AutoEncoder architecture

Preparing the Data
In this section, we’ll build a simple AutoEncoder using the MNIST dataset. MNIST
is a classical dataset consisting of 70,000 low-resolution (28 × 28) black-and-white
images of handwritten numerical digits. We’ll download it from the redistribution of
the dataset hosted on Hugging Face. To download it, we’ll use a library called datasets,
which provides a unified API to access thousands of datasets for any type of data.
Details about how it works are not important now; just note that it will take care of

AutoEncoders | 57

https://oreil.ly/_8IgI
https://oreil.ly/VxsPo


downloading and caching for subsequent use. It provides two dataset splits—a train
set with 60,000 images and a test dataset with the remaining 10,000 images:

from datasets import load_dataset

mnist = load_dataset("mnist")

mnist

DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 60000
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 10000
    })
})

As you can see, the dataset contains a column called image, with the handwritten
images, and label, which contains the number represented by the image. As we’re
going to train an AutoEncoder to compress and reconstruct the image, we don’t really
need the label data at all: we’ll feed batches of random samples to the encoder, and the
decoder’s job will be to regenerate images that resemble the inputs. Because the input
data has everything required to train without relying on external annotated informa‐
tion, AutoEncoder training is an example of a self-supervised learning process.

We will ignore the labels for training, but we’ll use them later for visualization
purposes. As always, before training a model, let’s explore the dataset:

mnist["train"]["image"][1]

Images with a resolution of just 28 × 28 are very small by today’s standards. We’ll
use a helper function, show_images(), to show them with higher resolution. This
function is based on Python’s matplotlib library, which by default uses a high-contrast
color palette to represent monochrome image data:

from genaibook.core import show_images

show_images(mnist["train"]["image"][:4])

58 | Chapter 3: Compressing and Representing Information



Because the originals are black-and-white, we’ll configure matplotlib to just use gray
colors instead. We choose “reversed gray” (gray_r) to get black numbers on a white
background. Note that the originals are the other way around (pixels with number
data are white, while the background is all zeros, which means black color):

import matplotlib as mpl

mpl.rcParams["image.cmap"] = "gray_r"

show_images(mnist["train"]["image"][:4])

AutoEncoders | 59



1 As we’ll see later, the torchvision library transforms is a collection of common image transformation,
conversion, augmentation, and manipulation routines.

In the following example, we’ll convert the images to PyTorch tensors and shuffle the
training dataset. We’ll use ToTensor(), from the torchvision library,1 to convert the
input pixels, in the [0, 255] range, to PyTorch tensors, from 0 to 1. We don’t apply
any other manipulations. For convenience, show_images() can also draw tensors
representing images.

from torchvision import transforms

def mnist_to_tensor(samples):
    t = transforms.ToTensor()
    samples["image"] = [t(image) for image in samples["image"]]
    return samples

mnist = mnist.with_transform(mnist_to_tensor)
mnist["train"] = mnist["train"].shuffle(seed=1337)

Let’s check out a single image from the dataset and confirm that the input pixels
range from 0 to 1:

x = mnist["train"]["image"][0]
x.min(), x.max()

(tensor(0.), tensor(1.))

show_images(mnist["train"]["image"][0])

With the following code, we now create a PyTorch DataLoader to prepare the train‐
ing data. Because training an AutoEncoder is a self-supervised process, we’ll work
with the image column of the dataset and ignore the labels. Later, we’ll return and use
the labels to visualize results. A DataLoader is an abstraction whose primary mission
is to collate inputs, which means gathering and combining individual samples into
training batches with the same shape. In our case, all images have the same size, and
therefore, all tensors have the same shape, so the DataLoader will concatenate them
together. In more complicated cases, DataLoaders may need to deal with irregular
input shapes by using strategies such as padding or truncation.

60 | Chapter 3: Compressing and Representing Information



2 For an in-depth discussion of these and many other design choices, as well as an excellent and practical
overview of deep learning, we recommend Deep Learning for Coders with fastai and PyTorch.

from torch.utils.data import DataLoader

bs = 64
train_dataloader = DataLoader(mnist["train"]["image"], batch_size=bs)

Modeling the Encoder
First, we’ll create a model definition for the encoder part of the AutoEncoder. Because
we are working with image data, a natural choice is to use convolutional layers, which
are good at capturing image features. We could consider many other alternatives for
this problem: linear layers, transformer blocks, use of residual skip connections, etc.
We’ll use a simple convolutional encoder that is based on a convolutional AutoEn‐
coder implementation from the excellent pythae library. This is a great starting point
for exploration!

Convolutional layers are a collection of small 2D filters applied
repeatedly to different regions of the input image. These filters can
detect patterns such as lines or circular areas. Traditionally, 2D
filters have been used in digital image processing, where they are
carefully handcrafted to match specific features in input images.
The main difference with convolutional layers is that the filters are
not prepared beforehand—instead, convolutional layers learn them
as part of the training process of the network. By stacking multi‐
ple convolutional layers, the model can progressively extract more
abstract features from the input image, learning filters that effec‐
tively resolve the task. There’s a thrilling field of interpretation and
explainability that aims to visualize and understand the internal
workings of model layers, and it’s been shown that filters learned
by neural networks sometimes resemble classic filters designed
manually to detect edges, colors, or contours.
For an in-depth look at CNNs, we recommend Chapter 13 of Deep
Learning for Coders with fastai and PyTorch by Jeremy Howard and
Sylvain Gugger (O’Reilly).

Because we will stack several convolutional layers, we’ll write a simple helper func‐
tion, conv_block(), to create them. Our conv_block() helper makes a 2D convolu‐
tion, then appends a batch normalization layer and a nonlinearity (we’ll use the ReLU
activation function for this example). During training, batch normalization uses the
mean and standard deviation of the current batch to normalize input data so that it
remains within a predictable range, which most of the time results in smoother and
faster training.2

AutoEncoders | 61

https://www.oreilly.com/library/view/deep-learning-for/9781492045519
https://oreil.ly/og_9i
https://oreil.ly/og_9i
https://www.oreilly.com/library/view/deep-learning-for/9781492045519
https://www.oreilly.com/library/view/deep-learning-for/9781492045519


Let’s implement the function:

from torch import nn

def conv_block(in_channels, out_channels, kernel_size=4, stride=2, padding=1):
    return nn.Sequential(
        nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
        ),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(),
    )

As described, the encoder implementation will be a sequence of convolutional layers.
Each layer progressively reduces the image resolution while it increases the number
of channels of the representations to 1,024. Finally, we’ll append a linear layer at the
end to create 16-dimensional vector representations. The comments in the forward()
method show how the shape of the input data is transformed as it travels through the
layers:

class Encoder(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv1 = conv_block(in_channels, 128)
        self.conv2 = conv_block(128, 256)
        self.conv3 = conv_block(256, 512)
        self.conv4 = conv_block(512, 1024)
        self.linear = nn.Linear(1024, 16)

    def forward(self, x):
        x = self.conv1(x)  # (batch size, 128, 14, 14)
        x = self.conv2(x)  # (bs, 256, 7, 7)
        x = self.conv3(x)  # (bs, 512, 3, 3)
        x = self.conv4(x)  # (bs, 1024, 1, 1)
        # Keep batch dimension when flattening
        x = self.linear(x.flatten(start_dim=1))  # (bs, 16)
        return x

Let’s verify that we can run our input images through the encoder. They have a
[1, 28, 28] shape because they contain only one channel of (black or white) pixel
data. However, note that we coded our encoder in a general way; we could use it for
three-channel images as well:

mnist["train"]["image"][0].shape

torch.Size([1, 28, 28])

62 | Chapter 3: Compressing and Representing Information



3 In eval mode, BatchNorm2d applies the mean and standard deviation learned from all the mini batches during
training. Since we haven’t trained the model yet, this will be random data, but we are interested only in seeing
if the model definition works. During actual training, we use a batch size larger than one, and BatchNorm2d
will work fine.

Let’s select and put a single image inside a batch, creating a new dimension with
PyTorch’s None indexing. We also need to set the encoder in eval mode. This mode
configures the model for inference instead of training. If we don’t do this, the last
BatchNorm2d layer will fail because it will receive a tensor with shape [1, 1024,
1, 1], and it can’t compute the mean and standard deviation of a single sample:3

in_channels = 1

x = mnist["train"]["image"][0][None, :]
encoder = Encoder(in_channels).eval()

encoded = encoder(x)
encoded.shape

torch.Size([1, 16])

The encoder model works! It converts 28 × 28 images (784 pixels each) into vectors
with just 16 numbers. If we can train it effectively, the representations computed by
the encoder will have much lower dimensionality than the original pixel data.

Of course, the representations are currently meaningless, as the model is yet to be
trained:

encoded

tensor([[-0.0145, -0.0318, -0.0109,  0.0080,
         -0.0218,  0.0305,  0.0183, -0.0294,
          0.0075,  0.0178, -0.0161, -0.0018,
          0.0208, -0.0079,  0.0215,  0.0101]],
       grad_fn=<AddmmBackward0>)

Let’s see if it can handle a batch of 64 images:

batch = next(iter(train_dataloader))
encoded = Encoder(in_channels=1)(batch)
batch.shape, encoded.shape

(torch.Size([64, 1, 28, 28]), torch.Size([64, 16]))

This completes our Encoder model, which transforms images to intermediate repre‐
sentations. Let’s move to the Decoder now.

AutoEncoders | 63



4 A transposed convolution works just like a convolution, but instead of applying it to the 2D input data, it
is applied to an enlarged version of it (the 2D input is filled with zeros between the rows and the columns).
This results in an output 2D matrix that is larger than the input after the filter is applied. Aqeel Anwar’s
blog post “What Is Transposed Convolutional Layer?” shows excellent visualizations of how convolutions and
transposed convolutions work.

Decoder
The decoder begins with the latent representation obtained by the encoder (vectors
with 16 dimensions) and turns them into images of the original size.

The decoder architecture does not have to be the reverse of the encoder’s; it can be
anything that “understands” the encoder representations and is able to translate them
to images. In our case, we’ll create a more or less symmetrical network to the encoder:
we’ll apply transposed convolutions to increase the resolution while decreasing the
number of channels until we reach our desired output resolution of 28 × 28 pixels.4

We’ll prepend the transposed convolutions with a linear layer to create tensors of
16,384 (1024 × 4 × 4) pixels. This layer will be reshaped to a 4 × 4 resolution
([1024,4,4]), which will be the input to the first transposed convolution. From
there, we progressively reduce the channels and increase the resolution until we reach
the original image shape. There are other ways to achieve the same; remember that
the input is a flat vector with 16 channels, and the output must consist of 1 channel
and 28 × 28 pixels.

Here’s our Decoder implementation:

def conv_transpose_block(
    in_channels,
    out_channels,
    kernel_size=3,
    stride=2,
    padding=1,
    output_padding=0,
    with_act=True,
):
    modules = [
        nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
        ),
    ]
    if with_act:  # Controlling this will be handy later
        modules.append(nn.BatchNorm2d(out_channels))

64 | Chapter 3: Compressing and Representing Information

https://oreil.ly/blQzh


        modules.append(nn.ReLU())
    return nn.Sequential(*modules)

class Decoder(nn.Module):
    def __init__(self, out_channels):
        super().__init__()

        self.linear = nn.Linear(
            16, 1024 * 4 * 4
        )  # note it's reshaped in forward
        self.t_conv1 = conv_transpose_block(1024, 512)
        self.t_conv2 = conv_transpose_block(512, 256, output_padding=1)
        self.t_conv3 = conv_transpose_block(256, out_channels, output_padding=1)

    def forward(self, x):
        bs = x.shape[0]
        x = self.linear(x)  # (bs, 1024*4*4)
        x = x.reshape((bs, 1024, 4, 4))  # (bs, 1024, 4, 4)
        x = self.t_conv1(x)  # (bs, 512, 7, 7)
        x = self.t_conv2(x)  # (bs, 256, 14, 14)
        x = self.t_conv3(x)  # (bs, 1, 28, 28)
        return x

decoded_batch = Decoder(x.shape[0])(encoded)
decoded_batch.shape

torch.Size([64, 1, 28, 28])

Training
So far, we have created the Encoder, which reduces the dimensionality of the input
images, and the Decoder, which expands low-dimensional latent to the original image
resolution. In addition to being initialized with random weights, these two compo‐
nents are completely unconnected at the moment. We need to train them together so
that they both understand the same latent representations.

To do so, we’ll create an AutoEncoder model that passes the input data through
the encoder and the decoder in sequence. We’ll train it to minimize the difference
between the decoded image at the output and the original image we supplied as input.
If we are successful, the output images will resemble the inputs.

This process is useful as it allows data compression, but it becomes even more
interesting when we realize that we can use the two components separately after
training. This will enable us to do many exciting things in the following chapters.
For example, we can use the encoder to convert arbitrary images to more-compressed
representations, which can be used as inputs by other models. We can also use the
decoder to generate new images that resemble the ones from the training dataset.

AutoEncoders | 65



Excited? Let’s get started on training our AutoEncoder:

class AutoEncoder(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.encoder = Encoder(in_channels)
        self.decoder = Decoder(in_channels)

    def encode(self, x):
        return self.encoder(x)

    def decode(self, x):
        return self.decoder(x)

    def forward(self, x):
        return self.decode(self.encode(x))

model = AutoEncoder(1)

We can use the torchsummary library to print a summary of the model, which shows
the number of parameters and the output shape of each layer. This is a useful tool to
check if the model is correctly defined and to understand the model’s architecture:

import torchsummary

torchsummary.summary(model, input_size=(1, 28, 28), device="cpu")

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1          [-1, 128, 14, 14]           2,176
       BatchNorm2d-2          [-1, 128, 14, 14]             256
              ReLU-3          [-1, 128, 14, 14]               0
            Conv2d-4            [-1, 256, 7, 7]         524,544
       BatchNorm2d-5            [-1, 256, 7, 7]             512
              ReLU-6            [-1, 256, 7, 7]               0
            Conv2d-7            [-1, 512, 3, 3]       2,097,664
       BatchNorm2d-8            [-1, 512, 3, 3]           1,024
              ReLU-9            [-1, 512, 3, 3]               0
           Conv2d-10           [-1, 1024, 1, 1]       8,389,632
      BatchNorm2d-11           [-1, 1024, 1, 1]           2,048
             ReLU-12           [-1, 1024, 1, 1]               0
           Linear-13                   [-1, 16]          16,400
          Encoder-14                   [-1, 16]               0
           Linear-15                [-1, 16384]         278,528
  ConvTranspose2d-16            [-1, 512, 7, 7]       4,719,104
      BatchNorm2d-17            [-1, 512, 7, 7]           1,024
             ReLU-18            [-1, 512, 7, 7]               0
  ConvTranspose2d-19          [-1, 256, 14, 14]       1,179,904
      BatchNorm2d-20          [-1, 256, 14, 14]             512
             ReLU-21          [-1, 256, 14, 14]               0
  ConvTranspose2d-22            [-1, 1, 28, 28]           2,305
      BatchNorm2d-23            [-1, 1, 28, 28]               2

66 | Chapter 3: Compressing and Representing Information



             ReLU-24            [-1, 1, 28, 28]               0
          Decoder-25            [-1, 1, 28, 28]               0
================================================================
Total params: 17,215,635
Trainable params: 17,215,635
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 2.86
Params size (MB): 65.67
Estimated Total Size (MB): 68.54
----------------------------------------------------------------

In the code that follows, we create a simple training loop that repeatedly goes through
the training data and uses a constant learning rate. To focus on the essentials, we
won’t bother running validations on the test set (but you are encouraged to do it
to practice!). We use the popular tqdm library for progress display, but we won’t
describe it here for the sake of brevity; we’ll see more examples in other chapters.
It’s not necessary to understand everything that’s going on; just pay attention to the
high-level operations:

1. Load a batch from the DataLoader.1.
2. Get the model predictions.2.
3. Calculate the loss with respect to the original images.3.
4. Perform an optimizer step to update the model weights.4.

import torch
from matplotlib import pyplot as plt
from torch.nn import functional as F
from tqdm.notebook import tqdm, trange

from genaibook.core import get_device

num_epochs = 10
lr = 1e-4

device = get_device()
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, eps=1e-5)

losses = []  # List to store the loss values for plotting
for _ in (progress := trange(num_epochs, desc="Training")):
    for _, batch in (
        inner := tqdm(enumerate(train_dataloader), total=len(train_dataloader))
    ):
        batch = batch.to(device)

        # Pass through the model and obtain reconstructed images
        preds = model(batch)

AutoEncoders | 67



        # Compare the prediction with the original images
        loss = F.mse_loss(preds, batch)

        # Display loss and store for plotting
        inner.set_postfix(loss=f"{loss.cpu().item():.3f}")
        losses.append(loss.item())

        # Update the model parameters with the optimizer based on this loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    progress.set_postfix(loss=f"{loss.cpu().item():.3f}", lr=f"{lr:.0e}")

Let’s plot the loss curve to see how the training went:

plt.plot(losses)
plt.xlabel("Step")
plt.ylabel("Loss")
plt.title("AutoEncoder – Training Loss Curve")
plt.show()

We didn’t perform validation during the training loop, but we can see how the
AutoEncoder fares with the test set. Training with visual data is a great way to learn
and iterate, as we can see the final results and judge for ourselves.

68 | Chapter 3: Compressing and Representing Information



We’ll create a batch with 16 samples from the test set, pass them through the trained
encoder and decoder, and display the reconstructions. Let’s begin creating the evalua‐
tion DataLoader:

eval_bs = 16
eval_dataloader = DataLoader(mnist["test"]["image"], batch_size=eval_bs)

We’ll use model.eval() to put the model in evaluation mode (in our case, it will
disable BatchNorm updates) and the inference_mode context manager to turn off
gradient computation:

model.eval()
with torch.inference_mode():
    eval_batch = next(iter(eval_dataloader))
    predicted = model(eval_batch.to(device)).cpu()

Now that we have the predictions, let’s display the original images and their recon‐
structions:

batch_vs_preds = torch.cat((eval_batch, predicted))
show_images(batch_vs_preds, imsize=1, nrows=2)

The results shown here, with the first line of images representing the original MNIST
images and the second line of images representing reconstructions from our AutoEn‐
coder, look pretty good! Remember that the numbers in the second row are approxi‐
mations of the originals obtained by the decoder from concise vector representations.

At this point, we suggest ensuring you understand the concepts just introduced.
We also recommend trying to get better reconstruction results. Here are some experi‐
ment ideas:

• Progressively decrease the learning rate.•
• Try different batch sizes.•
• Use a sigmoid function at the decoder’s end to encourage the final pixel values•

to be either black or white. Note that our input data is between 0 and 1, so the
sigmoid output must match that range.

• Play with the network depth or topology.•

We also suggest experimenting with the training loop by adding and logging the
evaluation loss during training.

AutoEncoders | 69



Exploring the Latent Space
One important hyperparameter of the AutoEncoder is the number of dimensions we
use to represent the encoded inputs. We arbitrarily chose 16, and our results show
that this seems enough to represent the wide variety of hand-drawn numbers in the
MNIST dataset.

For our next experiment, we will use just two dimensions to represent the vectors in
the latent space. We’ll force the encoder to squeeze as much information as possible
about input images into just two float numbers, and we’ll figure out if this is enough
to recover the inputs. In addition, using two dimensions is very convenient for
visualization. After training our new model, we can draw some interesting plots in 2D
space that will help us gain additional intuition.

We’ll slightly refactor our code with the following changes:

• We include the dimensionality of the latent space as a hyperparameter.•
• We use a container (nn.Sequential) for the convolution layers to make it easier•

to adjust the network depth if we want to experiment with that later.
• We replace the activation after the final decoder convolution with a sigmoid•

function. We want to encourage the decoder to produce pixels that are either
black or white, and a sigmoid activation function is better suited than ReLU for
that purpose. This is because the sigmoid function squashes the output to the
range (0, 1), the same range as pixels in the images.

This can also be an excellent time to put our training loop inside a function.

Don’t try to create code with many options and parameters from
the start. It’s better to start with the simplest working code you can
write and progressively make it richer as needed (and if required).

Figure 3-3 shows a plot of the ReLU versus the sigmoid function. By using sigmoid
as the activation function, we ensure that the output after each layer lies within the
range (0, 1), the same range the input images use. This is not strictly necessary for
the network to learn; we are trying to help it because we know our desired output
range.

70 | Chapter 3: Compressing and Representing Information



Figure 3-3. Activation functions: ReLU versus Sigmoid

The refactored code with these changes looks like this:

class Encoder(nn.Module):
    def __init__(self, in_channels, latent_dims):
        super().__init__()

        self.conv_layers = nn.Sequential(
            conv_block(in_channels, 128),
            conv_block(128, 256),
            conv_block(256, 512),
            conv_block(512, 1024),
        )
        self.linear = nn.Linear(1024, latent_dims)

    def forward(self, x):
        bs = x.shape[0]
        x = self.conv_layers(x)
        x = self.linear(x.reshape(bs, -1))
        return x

class Decoder(nn.Module):
    def __init__(self, out_channels, latent_dims):
        super().__init__()

        self.linear = nn.Linear(latent_dims, 1024 * 4 * 4)
        self.t_conv_layers = nn.Sequential(
            conv_transpose_block(1024, 512),
            conv_transpose_block(512, 256, output_padding=1),
            conv_transpose_block(
                256, out_channels, output_padding=1, with_act=False
            ),

AutoEncoders | 71



        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        bs = x.shape[0]
        x = self.linear(x)
        x = x.reshape((bs, 1024, 4, 4))
        x = self.t_conv_layers(x)
        x = self.sigmoid(x)
        return x

The new version of the AutoEncoder class is almost identical to the previous
one: it calls the decoder on the encoder’s outputs. It simply accepts an additional
argument, latent_dims, so that we can specify the desired dimensionality of the
representations:

class AutoEncoder(nn.Module):
    def __init__(self, in_channels, latent_dims):
        super().__init__()
        self.encoder = Encoder(in_channels, latent_dims)
        self.decoder = Decoder(in_channels, latent_dims)

    def encode(self, x):
        return self.encoder(x)

    def decode(self, x):
        return self.decoder(x)

    def forward(self, x):
        return self.decode(self.encode(x))

The training loop is the same as before, but we put it inside a function to reuse it and
call it whenever needed:

def train(model, num_epochs=10, lr=1e-4):
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr, eps=1e-5)

    model.train()  # Put model in training mode
    losses = []
    for _ in (progress := trange(num_epochs, desc="Training")):
        for _, batch in (
            inner := tqdm(
                enumerate(train_dataloader), total=len(train_dataloader)
            )
        ):
            batch = batch.to(device)

            # Pass through the model and obtain another set of images
            preds = model(batch)

            # Compare the prediction with the original images
            loss = F.mse_loss(preds, batch)

72 | Chapter 3: Compressing and Representing Information



            # Display loss and store for plotting
            inner.set_postfix(loss=f"{loss.cpu().item():.3f}")
            losses.append(loss.item())

            # Update the model parameters with the optimizer based on this loss
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
        progress.set_postfix(loss=f"{loss.cpu().item():.3f}", lr=f"{lr:.0e}")
    return losses

We create and train an AutoEncoder with just two latent variables:

ae_model = AutoEncoder(in_channels=1, latent_dims=2)
ae_model.to(device)

losses = train(ae_model)

plt.plot(losses)
plt.xlabel("Step")
plt.ylabel("Loss")
plt.title("Training Loss Curve (two latent dimensions)")
plt.show()

Let’s once again load the trained model and look at some reconstructions:

ae_model.eval()
with torch.inference_mode():
    eval_batch = next(iter(eval_dataloader))
    predicted = ae_model(eval_batch.to(device)).cpu()

AutoEncoders | 73



batch_vs_preds = torch.cat((eval_batch, predicted))
show_images(batch_vs_preds, imsize=1, nrows=2)

The results are not quite as good as before, but remember, we now use just two floats
to represent a 28 × 28 handwritten image. We see some confusion with the 4s, the 5s,
and the 9s, but overall, the recovered images are very similar to the input ones!

Visualizing the Latent Space
We used just two dimensions for the latent space to visualize its structure easily. Let’s
now represent all the encoded vectors from the test dataset, using the label column
to assign different colors to each class. The first value of the encoded vectors will be
displayed on the x-axis, and the second value will be represented on the y-axis:

images_labels_dataloader = DataLoader(mnist["test"], batch_size=512)

import pandas as pd

df = pd.DataFrame(
    {
        "x": [],
        "y": [],
        "label": [],
    }
)

for batch in tqdm(
    iter(images_labels_dataloader), total=len(images_labels_dataloader)
):
    encoded = ae_model.encode(batch["image"].to(device)).cpu()
    new_items = {
        "x": [t.item() for t in encoded[:, 0]],
        "y": [t.item() for t in encoded[:, 1]],
        "label": batch["label"],
    }
    df = pd.concat([df, pd.DataFrame(new_items)], ignore_index=True)

plt.figure(figsize=(10, 8))

for label in range(10):
    points = df[df["label"] == label]
    plt.scatter(points["x"], points["y"], label=label, marker=".")

plt.legend();

74 | Chapter 3: Compressing and Representing Information



The AutoEncoder has done a good job at separating different areas of the latent space
for the various images in our dataset. Note, for example, how images representing the
number 0 (dark blue dots) are distant from the representations of 1s (orange dots).
Remember that no information about the image labels was used during training, but
even so, data points were automatically grouped in different regions according to
their visual features. However, this process took place in an entirely unconstrained
way, so there is no guarantee about the shape or structure of the latent space.

Therefore, the latent space is rich enough to capture the relevant image features in
our dataset, but it’s still not clear how we can use it for generative purposes. Ideally, to
generate new images similar to the ones in MNIST, we’d want to discard the encoder
and supply random samples from the latent space to the decoder. However, we can
see some issues in the plot:

• The space taken by the representation is spread out in all directions.•
• There are many overlaps at the center and big regions of empty space.•
• The plot is nonsymmetric: negative values in the y-axis are used more than•

positive ones.

AutoEncoders | 75



This makes it challenging to select appropriate regions in the latent space that could
lead to great generations. Let’s see an example of image generation with the decoder.
We begin by generating random latent samples (usually denoted z):

N = 16  # We'll generate 16 points
z = torch.rand((N, 2)) * 8 - 4

Let’s visualize the generated latent samples overlayed on top of the latent space
representation we showed before:

plt.figure(figsize=(10, 8))

for label in range(10):
    points = df[df["label"] == label]
    plt.scatter(points["x"], points["y"], label=label, marker=".")

plt.scatter(z[:, 0], z[:, 1], label="z", marker="s", color="black")
plt.legend();

76 | Chapter 3: Compressing and Representing Information



5 You can use torch.manual_seed(num) to specify a seed.

Finally, let’s ask the decoder to generate images from the latent samples we just
created:

ae_decoded = ae_model.decode(z.to(device))
show_images(ae_decoded.cpu(), imsize=1, nrows=1, suptitle="AutoEncoder")

The generated images are reasonable in the places where the samples are close to
one of the regions carved by the model in the latent space, but they are much less
convincing when they lie outside those areas. In addition, note that some numbers
will be overrepresented because their assigned regions in latent space are larger.

The next section discusses how we can use a different type of AutoEncoder to impose
some order in latent space and how this can make generation easier.

Before moving on, here are some (progressively more challenging) exercises that you
can tackle now (or at the end of the chapter) to reinforce your understanding of the
concepts:

1. How well does generation work if the model is trained with 16 latent dimensions?1.
2. Train the model again with the same parameters we used (just run the code2.

shown in the chapter) but with different random number initialization,5 and
visualize the latent space. Chances are that the shapes and structure are different.
Is this something you would expect? Why?

3. How good are the image features extracted by the encoder? Discard the decoder3.
part of the AutoEncoder and build a number classifier on top of the encoder. You
can, for example, train a couple of linear layers with a nonlinearity between them.
The final linear layer should output a vector with 10 dimensions representing
the 10 labels in the dataset. Train only these layers without updating the weights
of the encoder. What accuracy can you get? How does the model with 16 latent
dimensions compare to the one with just two?

AutoEncoders | 77



6 A Gaussian distribution, also called normal distribution, has a bell-shaped curve with most values clustered
around the mean and fewer values at the extremes.

7 A family of VAEs called conditional VAEs (C-VAEs) uses class information to further separate distributions
in latent space while still keeping Gaussian representation of the features. This makes it easier to generate
samples resembling the specific class we’re interested in.

Variational AutoEncoders
In the previous section, we explored how a simple AutoEncoder can learn efficient
representations of the input data in a lower-dimensional latent space. The Auto‐
Encoder can faithfully encode any sample and recover (or decode) it later. This works
great for feature extraction or data representation but is not well suited for generating
new samples.

As discussed before, the reason is that the AutoEncoder is not incentivized to separate
the representations into consistent portions of the latent space. As we saw, represen‐
tations of similar inputs are usually clustered close together, but there’s a significant
amount of overlap and empty space, as well as substantial variability in the amount of
latent space dedicated to each class. If we choose a random point in the latent space
and pass it through the decoder, we can’t faithfully predict what result will come up.

Variational AutoEncoders (VAEs) address this by learning a probability distribution
for each feature in the latent space. Instead of mapping inputs to specific points, VAEs
represent each feature with a Gaussian distribution,6 capturing the variability of that
feature within the data.

Consider, for example, a dataset consisting of images of multiple breeds of dogs and
cats. We don’t know what features will be extracted by the encoder, but we could
imagine that some could be used to represent characteristics such as furry patches,
eyes, ears, legs, or tails. These may have a great degree of overlap among all the
images in the dataset (all these animals have two ears, four legs, and a tail), but there’s
also variability in how ears look in dogs versus how they look in cats. Our “ear”
feature could be represented by a Gaussian distribution that covers all this variability,
with the mean of the distribution representing the average shape of an animal ear.
If we move away from the mean in different directions, we’ll get a continuous and
homogeneous transition toward different ear shapes that may appear in various
breeds.

This approach, conceptually represented in Figure 3-4, creates a more structured
latent space, where sampling from these distributions allows us to generate new,
plausible instances. Just as with AutoEncoders, class information is typically not used
in VAEs.7 Let’s see how we can code and train them.

78 | Chapter 3: Compressing and Representing Information



8 Actually, not really the variance, as we’ll see shortly.

Figure 3-4. VAEs learn Gaussian representations of the features and describe them
through their means and variances. Points z in the latent space are sampled from the
predicted Gaussian distributions.

VAE Encoders and Decoders
VAE encoders are very similar to the basic encoders in the previous section. In our
example, we used a few convolutional layers and a linear layer to project to the
desired size of the latent representation.

To create our first VAE encoder, we’ll use the same architecture. The only difference
is that, instead of a linear layer to predict the latent space of an image, we want
to use linear layers to learn the distribution. A distribution is characterized by two
parameters, the mean and the variance, so we’ll need two linear layers:

• One of the linear layers will represent the mean of the distribution we are trying•
to learn.

• The other linear layer will learn the variance of the distribution.8•

In terms of code, this is what our first VAE encoder looks like:

class VAEEncoder(nn.Module):
    def __init__(self, in_channels, latent_dims):
        super().__init__()

        self.conv_layers = nn.Sequential(
            conv_block(in_channels, 128),
            conv_block(128, 256),
            conv_block(256, 512),
            conv_block(512, 1024),
        )

        # Define fully connected layers for mean and log-variance
        self.mu = nn.Linear(1024, latent_dims)

Variational AutoEncoders | 79



        self.logvar = nn.Linear(1024, latent_dims)

    def forward(self, x):
        bs = x.shape[0]
        x = self.conv_layers(x)
        x = x.reshape(bs, -1)
        mu = self.mu(x)
        logvar = self.logvar(x)
        return (mu, logvar)

You’ll find minimal differences if you compare the code snippet with the Encoder
example from the previous section. We use two linear layers instead of one to com‐
pute two different values from the same representation extracted by the convolutional
layers, and we return those two values in the forward() method.

The purpose of these two computed values is to represent the mean and the variance
of a probability distribution. However, they are initially just two identical linear
layers. The challenge is to ensure that they learn to represent what we intend—mean
and variance—during the training process, as we’ll show.

Before that, note that the computed value mu represents the mean, and logvar
represents the logarithm of the variance. We use mu for the mean after the Greek letter
μ, frequently used in math notation to represent the mean of a normal distribution.
The reason for using logvar rather than directly outputting the variance is primarily
numerical stability, as we’ll explain later.

How about the decoder? It turns out we don’t need to make any changes to it. The
difference between a VAE and a simple AutoEncoder lies in the way we find a point
in latent space to represent an input item, but the mission of the decoder is the
same: given a point in latent space (z), show the pixels whose encoded representation
is most similar to z. In the case of the AutoEncoder, z is a linear projection of
the features extracted by the convolutional layers. When we use a VAE encoder, we
obtain a normal distribution, and then we sample from that distribution to obtain z.
Therefore, we can use the same Decoder class we used in the previous section, but we
do need to modify the model to sample from the distribution.

Sampling from the Encoder Distribution
Our updated VAE encoder returns the mean and variance of a normal distribution
that tries to match the input data representations. To obtain a decoded output, we
must sample from that distribution, as shown in the following snippet:

class VAE(nn.Module):
    def __init__(self, in_channels, latent_dims):
        super().__init__()
        self.encoder = VAEEncoder(in_channels, latent_dims) 
        self.decoder = Decoder(in_channels, latent_dims)

80 | Chapter 3: Compressing and Representing Information



    def encode(self, x):
        # Returns mu, log_var
        return self.encoder(x)

    def decode(self, z):
        return self.decoder(z)

    def forward(self, x):
        # Obtain parameters of the normal (Gaussian) distribution
        mu, logvar = self.encode(x) 

        # Sample from the distribution
        std = torch.exp(0.5 * logvar) 
        z = self.sample(mu, std) 

        # Decode the latent point to pixel space
        reconstructed = self.decode(z) 

        # Return the reconstructed image, and also the mu and logvar
        # so we can compute a distribution loss
        return reconstructed, mu, logvar 

    def sample(self, mu, std):
        # Reparametrization trick
        # Sample from N(0, I), translate and scale
        eps = torch.randn_like(std) 
        return mu + eps * std

We use latent_dims dimensions to represent the mean and log variance of the
distributions.

The encoder computes two variables now: mean and log variance.

Compute the standard deviation from the log variance.

Sample from the distribution by using the computed mean and standard devia‐
tion.

The decoder converts the sample to an image.

We return not only the reconstructed image but also the mean and the log
variance.

Reparametrization trick: sample from a standard normal distribution and then
translate and scale.

So far, we’ve appealed to intuition to explain how VAEs work. If you allow us a brief
detour into a couple of statistical concepts, we can quickly review the preceding code
while trying to be more precise in terminology. Feel free to skip this section or come

Variational AutoEncoders | 81



back to it later. It’s not necessary to understand it to use or train VAEs, but it may help
if you want to dive deeper and read papers about the topic.

First, note that we use multidimensional Gaussian distributions, not just real-valued
1D normal curves. In this VAE encoder example, we use latent_dims for both the
mean and the variance. We could use an arbitrary number of dimensions, like the 16
we used for our first MNIST AutoEncoder, or 2 for easier visualization. A real-valued
(1D) normal distribution is denoted as N μ,σ2  and is defined by two magnitudes:
µ, the mean of the distribution, and σ, the standard deviation, which is the square root
of the variance σ2.

One useful characteristic of normal distributions is that all of them can be expressed
in terms of the standard normal distribution, whose mean is 0 and variance is 1, by
translating and scaling it:

N μ,σ2 = μ + σN 0, 1

This means that to obtain a sample from an arbitrary normal distribution N μ,σ2 ,
we can instead sample from N 0, 1 , then multiply by σ and add µ. This is called
reparametrization and will be quite helpful when we look into diffusion models.

Multidimensional Gaussian distributions are called multivariate. They can still be
defined by two parameters, with the difference that µ is a vector and σ (the covariance
matrix, now denoted with Σ) is a matrix. Hence, the distribution is defined as
N μ,Σ . If the distribution is independent in all dimensions, meaning each variable
is uncorrelated with the others and has the same variance, it is called isotropic. In an
isotropic multivariate Gaussian distribution, the covariance matrix Σ  is a diagonal
matrix where all the items in the diagonal are equal and can be expressed as σ2I,
where I is the identity matrix. The standard multivariate Gaussian is then expressed
as N 0, I .

Our preceding VAE example models a multivariate, isotropic Gaussian distribution,
as there’s no reason to think that sample coordinates depend on each other (and
it’s simpler!). This means we can use the so-called reparametrization trick to sample
from the standard Gaussian, then translate and scale to obtain the latent space vector
we’ll decode.

The reparametrization trick is not used just for convenience—it’s a crucial ingredient
for training. When we use the expression mu + eps * std, where eps is a sample
from the standard Gaussian, the gradients with respect to the model inputs are inde‐
pendent of the stochastic process (sampling from a distribution) and can, therefore,
be computed. This makes it possible to train the model with the familiar gradient
descent methods we follow to train any neural network.

82 | Chapter 3: Compressing and Representing Information



Speaking of stability, our model predicts the log of the variance instead of the variance
to increase numerical stability and facilitate training. Mathematically, it makes no
difference to compute one or the other. In practice, we know the variance is always
a positive number, usually close to 0. However, there’s no reason for the model to
produce positive and small values when we start training. Furthermore, numbers are
represented in floating-point format, which makes it difficult to discriminate values
very close together. By taking the log, we get two benefits:

• We expand the range of acceptable values to –∞, so the model has a lot more•
latitude to express the results with floating-point values.

• We ensure that the variance is always positive, because it’s the exponential of the•
logvar.

Gaussian distributions are frequently used in many other areas of
ML, sometimes for convenience because their mathematical char‐
acteristics are well-known. In Chapter 4, we’ll explore their use to
model the noise corruption, which is an essential part of diffusion
models.

Training the VAE
The key to training the VAE is the loss function. In “AutoEncoders” on page 57,
the loss function we used measured the difference between the reconstructed and
original images. We still want the reconstructed images to resemble the originals as
much as possible, but we now introduce a second factor to the loss to impose the VAE
constraint we’ve been talking about: we want the features to (more or less) follow a
Gaussian distribution.

The way we achieve that goal is by using Kullback–Leibler divergence, also known
as relative entropy, between the distributions. Kullback–Leibler divergence, or KL
divergence (KLD), is a way to measure how much a probability distribution differs
from another one. In the case of multivariate isotropic Gaussian distributions, it can
be shown that KLD can be computed as follows:

DKL N μ,σ2 N 0, 1 = − 1
2 ∑ 1 + log σ2 − μ2 − σ2

Variational AutoEncoders | 83



9 Remember that the VAE encoder returns not only the reconstructed images but also the mean and the log
variance of the distributions.

To combine the two loss factors, we create a loss function called vae_loss()
that receives the original images and the outputs from the encoder and does the
following:9

• Computes the reconstruction loss as the mean squared error (MSE) between•
the pixels generated by the decoder and the original images. This loss factor is
identical to the one we used to train AutoEncoders.

• Computes the KLD term following the equation we just presented.•
• Adds them together. We could assign more importance to one or the other to•

balance reconstruction fidelity and conformance to a Gaussian distribution. We’ll
sum them for now, but playing with this balance is a great experiment to try.

The loss function returns three values: the total loss, the reconstruction loss, and the
KLD term. We need only the total loss for training, but we keep track of the others for
visualization and analysis:

def vae_loss(batch, reconstructed, mu, logvar):
    bs = batch.shape[0]

    # Reconstruction loss from the pixels - 1 per image
    reconstruction_loss = F.mse_loss(
        reconstructed.reshape(bs, -1),
        batch.reshape(bs, -1),
        reduction="none",
    ).sum(dim=-1)

    # KL-divergence loss, per input image
    kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=-1)

    # Combine both losses and get the mean across images
    loss = (reconstruction_loss + kl_loss).mean(dim=0)

    return (loss, reconstruction_loss, kl_loss)

Now that we’ve defined the loss, we can proceed to train the model. We’ll use the total
loss to update the model weights, but we’ll also keep track of the reconstruction loss
and the KLD term to understand how the model is learning:

def train_vae(model, num_epochs=10, lr=1e-4):
    model = model.to(device)
    losses = {
        "loss": [],
        "reconstruction_loss": [],
        "kl_loss": [],
    }

84 | Chapter 3: Compressing and Representing Information



    model.train()
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr, eps=1e-5)
    for _ in (progress := trange(num_epochs, desc="Training")):
        for _, batch in (
            inner := tqdm(
                enumerate(train_dataloader), total=len(train_dataloader)
            )
        ):
            batch = batch.to(device)

            # Pass through the model
            reconstructed, mu, logvar = model(batch)

            # Compute the losses
            loss, reconstruction_loss, kl_loss = vae_loss(
                batch, reconstructed, mu, logvar
            )

            # Display loss and store for plotting
            inner.set_postfix(loss=f"{loss.cpu().item():.3f}")
            losses["loss"].append(loss.item())
            losses["reconstruction_loss"].append(
                reconstruction_loss.mean().item()
            )
            losses["kl_loss"].append(kl_loss.mean().item())

            # Update model parameters based on the total loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        progress.set_postfix(loss=f"{loss.cpu().item():.3f}", lr=f"{lr:.0e}")
    return losses
vae_model = VAE(in_channels=1, latent_dims=2)
losses = train_vae(vae_model, num_epochs=10, lr=1e-4)

Let’s analyze the three loss terms we stored during training:

Reconstruction loss
Measures how much the output images resemble the originals

KLD
Measures how well the features follow a Gaussian distribution

Total loss
The addition of the two previous losses

Variational AutoEncoders | 85



Let’s now plot the loss components while training a VAE. The total loss is the sum of
the reconstruction loss plus the KL term:

for k, v in losses.items():
    plt.plot(v, label=k)
plt.legend();

Even though the total loss was taken as the sum of the two losses, it is dominated, in
this case, by the reconstruction loss because its magnitude is much larger than KLD.
Let’s plot the loss components separately to see how they evolve during training, as
shown in Figure 3-5.

Figure 3-5. KL loss and reconstruction loss components during VAE training

86 | Chapter 3: Compressing and Representing Information



Note that the KL loss plot has a peculiar form: it spikes at the beginning of training,
then decreases, then slowly increases again. Why does that happen? We think these
are, conceptually, the phases KLD goes through in training:

• When training starts, the VAE encoder and decoder are initialized with random•
weights, and the model knows nothing about the input data. Therefore, the
outputs resemble a random distribution, and the KLD is very low.

• When the network has seen just a few batches of data, the reconstructions will be•
low-quality but not random anymore, and KLD spikes.

• Still in the early training stages, the model knows just enough to represent the•
average characteristics of the input data. The KLD term drives the model to
produce outputs that get closer and closer to a Gaussian distribution, decreasing
the KLD loss.

• As the encoder and decoder learn to produce more-faithful representations, it•
becomes harder to improve quality while still matching a Gaussian distribution.
The reconstruction loss dominates, and KLD increases, but there’s a balance
between the two. If we increased the importance of KLD in the loss term, we
could achieve better Gaussian conformance, but the cost would be worse pixel
representations.

Let’s reconstruct some images and visualize the results of VAE reconstructions from
MNIST samples:

vae_model.eval()
with torch.inference_mode():
    eval_batch = next(iter(eval_dataloader))
    predicted, mu, logvar = (v.cpu() for v in vae_model(eval_batch.to(device)))

batch_vs_preds = torch.cat((eval_batch, predicted))
show_images(batch_vs_preds, imsize=1, nrows=2)

Variational AutoEncoders | 87



Visual results are worse than in the AutoEncoder case because the model not only has
to learn how to encode the input images but is also constrained in terms of trying to
avoid diverging too much from a normal distribution. Let’s explore what happened
after we added this new goal.

If we plot the means of the standard distribution encoded by the model for the test
set, we obtain a slightly better-behaved result than in the AutoEncoder case, as shown
in the following plot. Results are now better centered around zero and don’t get as far
away as in the AutoEncoder case. Areas taken by the different classes are of similar
size, although there’s still overlap between similar-looking numbers:

df = pd.DataFrame(
    {
        "x": [],
        "y": [],
        "label": [],
    }
)

for batch in tqdm(
    iter(images_labels_dataloader), total=len(images_labels_dataloader)
):
    mu, _ = vae_model.encode(batch["image"].to(device))
    mu = mu.to("cpu")
    new_items = {
        "x": [t.item() for t in mu[:, 0]],
        "y": [t.item() for t in mu[:, 1]],
        "label": batch["label"],
    }
    df = pd.concat([df, pd.DataFrame(new_items)], ignore_index=True)

plt.figure(figsize=(10, 8))

for label in range(10):
    points = df[df["label"] == label]
    plt.scatter(points["x"], points["y"], label=label, marker=".")

plt.legend();

88 | Chapter 3: Compressing and Representing Information



The main advantage of trying to fit the encoder to a normal distribution is that we
should now be able to sample random data from the distribution and, hopefully,
obtain images that resemble our input dataset. Let’s see how it works for both the
AutoEncoder and the VAE:

z = torch.normal(0, 1, size=(10, 2))
ae_decoded = ae_model.decode(z.to(device))
vae_decoded = vae_model.decode(z.to(device))

show_images(ae_decoded.cpu(), imsize=1, nrows=1)
show_images(vae_decoded.cpu(), imsize=1, nrows=1)

Variational AutoEncoders | 89



We sample pure random data from a normal distribution and then use the Auto‐
Encoder (top row) and VAE (bottom row) decoders to display how those points
would be reconstructed. Of course, we will see different reconstructions, as the
AutoEncoder and VAE were trained separately, and they allocated different portions
of the latent space to each class.

The results from the VAE are more number-like than those of the AutoEncoder. This
is because the VAE training process encouraged the encoder to not veer away too
much from a normal distribution, while the AutoEncoder had no such restriction.
Can you run the sampling code a few times and observe it yourself?

A fun exercise is to show how representations morph as we travel in 2D through
latent space. We can fix a vertical line at x = -0.8, as done in Figure 3-6, and explore
different points on this line.

Figure 3-6. VAE latent space focusing on samples where x = -0.8

90 | Chapter 3: Compressing and Representing Information



10 This is a rather crude way to show the learned manifold of the model. For a better way to display this result
and additional experiments, we recommend the pytorch-mnist-vae GitHub repo by Jackie Loong.

If we select points from y = -2 to y = 2, we see that the reconstructions match the
latent space areas that represent various numbers:

import numpy as np

with torch.inference_mode():
    inputs = []
    for y in np.linspace(-2, 2, 10):
        inputs.append([-0.8, y])
    z = torch.tensor(inputs, dtype=torch.float32).to(device)
    decoded = vae_model.decode(z)
show_images(decoded.cpu(), imsize=1, nrows=1)

Let’s expand the idea of exploring the latent space to a 2D grid. This is a visual
representation of what the model learned, and it’s interesting to see that transitions
are not too crazy!10

inputs = []
for x in np.linspace(-2, 2, 20):
    for y in np.linspace(-2, 2, 20):
        inputs.append([x, y])
z = torch.tensor(inputs, dtype=torch.float32).to(device)
decoded = vae_model.to(device).decode(z)

show_images(decoded.cpu(), imsize=0.4, nrows=20)

Variational AutoEncoders | 91

https://oreil.ly/IyBnn


Once again, here are some exercises to dive into these topics:

1. When we trained the VAE, we added the reconstruction and KL divergence1.
losses. However, both have different scales. What will happen if we give more
importance to one versus the other? Can you run a few experiments and explain
the results?

2. The VAE we explored in this section uses only two dimensions to represent the2.
distribution’s mean and the logvar. Can you repeat a similar exploration using 16
dimensions?

92 | Chapter 3: Compressing and Representing Information



3. Humans are trained to look at faces and easily identify unrealistic features. Can3.
you train an AutoEncoder and a VAE for a dataset containing faces and analyze
the results? You can start with the Frey Face dataset that was used in the VAE
paper—it’s a homogenous set of monochrome images of faces from the same
person sporting different facial expressions. If you want to be more ambitious,
you can try your hand at the CelebFaces Attributes dataset, easily usable from the
Hugging Face Hub. Another interesting example is the Oxford pets dataset, also
available on the Hugging Face Hub.

VAEs for Generative Modeling
Training an encoder constrained to be close to a distribution is a key insight into
VAEs and one of the cornerstones of generative modeling. With AutoEncoder, we
could learn efficient representations of a dataset. Still, there was no guarantee that the
latent space learned by the model would help us generate new data that resembled
the original. By aiming to learn a distribution, VAEs allow us to generate plausible
new images, simply starting from random points in the latent space. Diffusion models
take this idea of sampling from random noise a step further, by incorporating itera‐
tive refinement to the process. We’ll discuss them at length in future chapters.

CLIP
So far, we’ve focused on image data. With Contrastive Language-Image Pre-training
(CLIP), we’ll steer away from AutoEncoder/VAE methods and explore a different
technique to match images with text. The process is similar in the sense that we aim
to create rich representations from the input data, but the method is different, and,
more importantly, it can deal with both images and text at once.

Our dataset now consists of two modalities: images and text captions describing those
images. Given that training data, the goal of CLIP is to create a model that measures
how accurately a text describes the contents of an image for an arbitrary text-image
pair that we supply. The key, as usual, is the loss function we use.

CLIP | 93

https://oreil.ly/Vxiln
https://oreil.ly/R75gg
https://oreil.ly/mnpbI
https://oreil.ly/rKMkI
https://oreil.ly/oz8hw


Contrastive Loss
CLIP was introduced by OpenAI in 2021. It was part of the tools developed to
create the initial DALL·E, an impressive text-to-image model that took the world by
storm. Even though DALL·E was not made open source (the model weights remain
private), CLIP was. This was extraordinary news, as the ability to relate images
with text enables quite a few tricks. CLIP and CLIP-like models have since become
indispensable tools in the generative landscape.

CLIP uses a loss function called contrastive loss. The way it works is shown schemat‐
ically in Figure 3-7. The training dataset consists of millions of images with their
associated descriptions or captions. For each image-caption pair, we encode the
image by using any image encoder to obtain an embedding vector in the encoder’s
latent space. Each of the figure’s I1, I2, …, IN boxes represents embedding vectors for
different images. The text is also encoded, usually with a transformer model like the
ones we saw in Chapter 2. Crucially, we use encoders such that the dimensions of
the embedding vectors of images and text are the same. This way, we can calculate
the inner product (or dot product) between the text and image embeddings to
determine how close they are.

Training progresses by supplying a lot of image-text pairs in the same batch. We
compute the dot products of all the image embeddings in the batch with all the
text embeddings in the same batch and try to maximize the product of the items
originally from the same pair (i.e., the blue diagonal in the image) while minimizing
the rest. This way, texts and images that are similar will be represented by vectors
close in the latent space, while different concepts will be far away in other regions.

Figure 3-7. CLIP (adapted from an image by OpenAI)

94 | Chapter 3: Compressing and Representing Information

https://oreil.ly/Anejl
https://oreil.ly/4DUf7
https://oreil.ly/5UQ25


Why Use the Dot Product?
If you don’t remember or haven’t studied calculus before, an important relationship
that holds in vector spaces is as follows:

A · B = A B cos θ

This means that the dot product between two vectors is the same as the product
of the lengths of the two vectors multiplied by the angle between them. This can
be shown using the law of cosines from Euclidean geometry and the definition of
dot product as A · B = ∑n = 1

N aibi. In our brief discussion, we didn’t mention that
the vector embeddings are normalized to unit length; therefore, their dot product
is the angle between the vectors. This is called cosine similarity, and it measures the
proximity between two vectors. Even though the vectors have many dimensions, the
dot product is just a scalar (i.e., a real number) that can be used as a similarity score.

Training a CLIP model requires huge amounts of data and lots of compute. The
original CLIP models released by OpenAI used a proprietary dataset of 400 million
image-text pairs and large batch sizes of 32,000 pairs. Since then, there have been
multiple efforts to train CLIP or CLIP-like models, including support for additional
modalities such as audio:

OpenCLIP
An open implementation of CLIP. It was used to train several models with
different datasets, image resolutions, and model sizes.

CLAP (Contrastive Language-Audio Pretraining)
Allows obtaining representations of audio rather than images. This can be used
to train models that generate audio, as we’ll explore in Chapter 9.

Using CLIP, Step-by-Step
We’ll now use pretrained CLIP models to gain intuition about how they work and
see a few examples of what they can be used for. In the following example, we use
clip-vit-large-patch14, one of the OpenAI CLIP models. It uses a Vision Transformer
(ViT) as the image encoder (other versions exist that use the ResNet convolutional
architecture). Larger and smaller versions exist as well; you can experiment with a
few to see how they work on your hardware in terms of speed, memory, and quality.

CLIP | 95

https://oreil.ly/t7d65
https://oreil.ly/Hkjbj
https://oreil.ly/wCGgZ
https://oreil.ly/KIIqC


Consider the photo in Figure 3-8, a royalty-free resource from Pixabay showing an
adorable lion cub looking at us from behind a tree branch. Let’s see how we can use it
with CLIP.

Figure 3-8. Photo of a cute lion cub behind a branch

So far we’ve used transformers only to load text models, but we can also use them to
work with other modalities. Just as we used GPT2LMHeadModel in the previous chapter,
we can use CLIPModel. Let’s try it out:

import requests
from PIL import Image
from transformers import CLIPModel, CLIPProcessor

from genaibook.core import SampleURL

clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

url = SampleURL.LionExample
image = Image.open(requests.get(url, stream=True).raw)

The CLIP model we loaded, clip, contains two components: a vision model to
encode images and a text model to encode text. CLIPProcessor, which you can think
of as the tokenizer equivalent, prepares input data to match the preprocessing steps
used during model training: image resizing, normalization, etc. This is essential to
ensure that the inputs we provide for inference have the same characteristics as the
data the model saw when it was trained. Let’s process the image first:

96 | Chapter 3: Compressing and Representing Information



image_inputs = processor(images=image, return_tensors="pt")
pixel_values = image_inputs["pixel_values"]
pixel_values.shape, pixel_values.min(), pixel_values.max()

(torch.Size([1, 3, 224, 224]), tensor(-1.7923), tensor(2.0179))

The image has been resized to a square of 224 pixels × 224 pixels and normalized.
You can examine the image processor for the full set of applied transformations. Note
that the strategy used for resizing is to center-crop (i.e., select a square-sized block
around the center of the image and then downscale it to 224 × 224). This method cuts
the left and right portions from landscape images or the top and bottom bands from
images with a portrait aspect ratio. Be mindful that this may result in information loss
if some of the subjects you want to examine are in those areas:

processor.image_processor

CLIPImageProcessor {
  "crop_size": {
    "height": 224,
    "width": 224
  },
  "do_center_crop": true,
  "do_convert_rgb": true,
  "do_normalize": true,
  "do_rescale": true,
  "do_resize": true,
  "image_mean": [
    0.48145466,
    0.4578275,
    0.40821073
  ],
  "image_processor_type": "CLIPImageProcessor",
  "image_std": [
    0.26862954,
    0.26130258,
    0.27577711
  ],
  "resample": 3,
  "rescale_factor": 0.00392156862745098,
  "size": {
    "shortest_edge": 224
  }
}

Let’s verify that our lion cub photo can survive a center crop:

width, height = image.size
crop_length = min(image.size)

left = (width - crop_length) / 2
top = (height - crop_length) / 2
right = (width + crop_length) / 2
bottom = (height + crop_length) / 2

CLIP | 97



cropped = image.crop((left, top, right, bottom))
cropped

The subject in our photo is fully preserved. Depending on your data, you may need to
crop the source images before passing them to the processor to ensure the subject is
visible.

We’ll now get the embedding vector from the preprocessed image. We use the vision
model stored inside the clip instance to do that. This subcomponent is sometimes
called the vision tower:

with torch.inference_mode():
    output = clip.vision_model(pixel_values.to(device))
image_embeddings = output.pooler_output
image_embeddings.shape

torch.Size([1, 1024])

The vision model returns a dictionary with the last hidden states and the pooler
output. This vector with shape [1, 1024] represents the result of the encoding
process. Let’s now turn our attention to the language portion of the model. We’ll
follow a similar process to get the embeddings for two text prompts: “a photo of
a lion” and “a photo of a zebra”. Our end goal is to compare the cosine similarity
between the image embeddings and each prompt embedding. Hopefully, the lion
description should match the image better!

98 | Chapter 3: Compressing and Representing Information



prompts = [
    "a photo of a lion",
    "a photo of a zebra",
]

# Padding makes sure all inputs have the same length
text_inputs = processor(text=prompts, return_tensors="pt", padding=True)

{'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1]]),
 'input_ids': tensor([[49406,   320,  1125,   539,   320,  5567, 49407],
        [49406,   320,  1125,   539,   320, 22548, 49407]])}

Text processing tokenizes the input strings just as in the previous chapter. We can
now pass the tokenized text inputs through the language tower part of the model to
get the prompt embeddings:

text_inputs = {k: v.to(device) for k, v in text_inputs.items()}

with torch.inference_mode():
    text_output = clip.text_model(**text_inputs)

text_embeddings = text_output.pooler_output
text_embeddings.shape

torch.Size([2, 768])

We get two vectors in the output by using a batch of two input prompts. However,
each vector has 768 dimensions, while the embeddings from the image have 1,024
dimensions. Remember that to compute the dot product of two vectors, they have
to have the same number of dimensions, and we insisted in the introduction to this
section that both the text encoder and the image encoder must produce embeddings
with the same dimensionality. There’s an additional step we didn’t mention before.
Instead of selecting encoder models that produce the same dimensions, we can take
arbitrary text and image encoders and compute a projection to vectors with the same
dimensionality. These projections were learned during the CLIP training process and
are also part of the clip model wrapper we downloaded before.

In this case, the learned projections are just linear layers that map their inputs to
vectors with 768 dimensions. There’s a projection for the text encoder and a different
one for the vision part of the model:

print(clip.text_projection)
print(clip.visual_projection)

Linear(in_features=768, out_features=768, bias=False)
Linear(in_features=1024, out_features=768, bias=False)

with torch.inference_mode():
    text_embeddings = clip.text_projection(text_embeddings)
    image_embeddings = clip.visual_projection(image_embeddings)
text_embeddings.shape, image_embeddings.shape

CLIP | 99



(torch.Size([2, 768]), torch.Size([1, 768]))

We are almost ready to compute the cosine similarities. We just need to remember
to use normalized vectors with unit norms, which we achieve by scaling our embed‐
dings and dividing by their respective norms. We can then compute the two dot
products at once by using matrix multiplication:

text_embeddings = text_embeddings / text_embeddings.norm(
    p=2, dim=-1, keepdim=True
)
image_embeddings = image_embeddings / image_embeddings.norm(
    p=2, dim=-1, keepdim=True
)

similarities = torch.matmul(text_embeddings, image_embeddings.T)
similarities

tensor([[0.2171],
        [0.1888]], device='cuda:0')

During training, these cosine similarities were interpreted as the logits to be fed to
a cross-entropy loss classifier that predicts the label for each image-text pair. Since
CLIP training used 32-sized batches, labels are each one of the 32,768 positions in the
batch. If you refer again to the CLIP image at the beginning of the section, once the
model has been trained, the cross-entropy process will select “class” T1 for I1, class T2
for I2, and so on.

There’s a final detail, though. Because the vectors are normalized, logits can lie only
within the range [-1, 1], which, because of floating-point format limitations, may
not have enough dynamic range to expressively capture the categorical probability
distributions of the 32K items. The authors used a learnable temperature parameter
to scale the logits to have a wider range. However, they also clipped this scale value
to a maximum of 100 for numerical stability. In all the training runs, they found that
the scale always reached the maximum value of 100. Therefore, CLIP inference uses a
scale factor of 100 before interpreting the logits as probabilities.

Let’s apply that correction to our previous code snippet, and then we can convert the
scaled similarity logits to probabilities. These probabilities represent how confident
the model is that the image corresponds to one of the two text captions we used:

similarities = 100 * torch.matmul(text_embeddings, image_embeddings.T)
similarities.softmax(dim=0).cpu()

tensor([[0.9441],
        [0.0559]])

The model matches the prompt “a photo of a lion” with the image with a confidence
of 94.4%.

100 | Chapter 3: Compressing and Representing Information



Zero-Shot Image Classification with CLIP
The process we followed in the previous section is a detailed walk-through of the
steps needed to implement a zero-shot classification task with CLIP. Fortunately, soft‐
ware libraries such as transformers or OpenCLIP provide higher layers of abstraction
that make the process much easier.

Why Is This Called Zero-Shot Classification?
Classification is one of the quintessential ML problems: given a data point and a set
of predefined classes, estimate the probability that the point corresponds to one of
the classes. According to this definition, the set of classes must be fixed in advance,
so the model we train will know only about these classes and nothing else. The
ImageNet dataset, for example, contains images from 20,000 classes. For years, the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was a test benchmark
for Computer Vision systems, with the goal of classifying objects belonging to just
1,000 of the ImageNet classes. In 2012, a deep CNN known as AlexNet easily won that
year’s challenge, and this started a revolution where accuracy figures increased year
after year as newer and better deep learning models were designed.

Zero-shot classification refers to the capability of a model to correctly classify data
without having been trained explicitly for the classes we are asking for. In Chapter 2,
we saw an example of zero-shot sentiment classification using LMs, and the previ‐
ous section is another prime demonstration of this capability. CLIP was trained to
match image-caption pairs, but we can leverage this behavior for classification if we
construct captions that could reasonably describe the images we want to classify. For
example, if we want to classify cats versus dogs, our prompts can be “A photo of a cat”
and “A photo of a dog”. CLIP will match the best prompt for the image we supply,
giving us the classification result we’re after.

Let’s replicate the example in the previous section with a higher-level transformers
API. We load the CLIP model, processor, and test image the same way we did before:

clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

image = Image.open(requests.get(SampleURL.LionExample, stream=True).raw)

We can leverage the processor to compute the inputs for both the image and the
text prompts simultaneously. We can also conveniently invoke the CLIP model with
the full set of inputs to retrieve the logits—or scaled cosine similarities—between the
image and each prompt. Let’s use a few more prompts to make things more fun:

prompts = [
    "a photo of a lion",
    "a photo of a zebra",

CLIP | 101



    "a photo of a cat",
    "a photo of an adorable lion cub",
    "a puppy",
    "a lion behind a branch",
]
inputs = processor(
    text=prompts, images=image, return_tensors="pt", padding=True
)
inputs = {k: v.to(device) for k, v in inputs.items()}

outputs = clip(**inputs)
logits_per_image = outputs.logits_per_image
probabilities = logits_per_image.softmax(dim=1)

probabilities = probabilities[0].cpu().detach().tolist()

for prob, prompt in sorted(zip(probabilities, prompts), reverse=True):
    print(f"{100*prob: =2.0f}%: {prompt}")

89%: a photo of an adorable lion cub
 9%: a lion behind a branch
 2%: a photo of a lion
 0%: a photo of a zebra
 0%: a photo of a cat
 0%: a puppy

Similarly, we can supply multiple images and prompts in the same input batch and
get all classification probabilities simultaneously. Feel free to explore and adapt to
your use case.

Zero-Shot Image-Classification Pipeline
Now that you know how CLIP works and how to use it for zero-shot image classifica‐
tion, we can use an even higher-level API for simplicity and convenience. We’ll use
the pipeline abstraction, which we already presented in Chapter 1. In that case, we
demonstrated how to use it for the text-classification task, but we can also apply it for
many other tasks, including zero-shot image classification.

To instantiate a pipeline, we simply give it the task name (zero-shot-image-
classification, in this case) and the model we want to use:

from transformers import pipeline

classifier = pipeline(
    "zero-shot-image-classification",
    model="openai/clip-vit-large-patch14",
    device=device,
)

The pipeline takes care of all the details for us: tokenization, image preprocessing,
and logits postprocessing. We just need to invoke the pipeline instance with the
image we want to classify and a set of candidate labels. The pipeline returns a

102 | Chapter 3: Compressing and Representing Information



dictionary, conveniently sorted by score, containing all the scores associated to the
labels we provided:

scores = classifier(
    image,
    candidate_labels=prompts,
    hypothesis_template="{}",
)

The hypothesis_template is a Python format string that is applied to each candidate
label to build the text prompt for classification. If we omit the hypothesis_template
argument, the pipeline will automatically use "This is a photo of a \{}", which
is appropriate to format class labels indicated by their name, such as “cat” or “lion”.
Since we already built prompts that work well with CLIP, we use "{}" to use our
labels untouched:

[{'label': 'a photo of an adorable lion cub',
  'score': 0.886413037776947},
 {'label': 'a lion behind a branch', 'score': 0.09321863204240799},
 {'label': 'a photo of a lion', 'score': 0.018809959292411804},
 {'label': 'a photo of a zebra', 'score': 0.0011134858941659331},
 {'label': 'a photo of a cat', 'score': 0.0004198708338662982},
 {'label': 'a puppy', 'score': 2.4912407752708532e-05}]

CLIP Use Cases
The original use case that CLIP was designed to solve is zero-shot image classifica‐
tion. The results are impressive: CLIP achieves performance similar to models trained
for ImageNet classification, without ever using the ImageNet labels during training.
As a consequence, performance remains equally strong on many other datasets, with
no need for fine-tuning them, as you can read in the original blog post.

The previous sections have shown that the basis for solving zero-shot image classifi‐
cation is the ability to compute the similarity between an arbitrary image and a text
prompt, and this is possible because both the image and the text embeddings capture
the essential semantics of the data. The way CLIP works has enabled the community
to use it for many tasks, not just zero-shot classification.

Being able to compute the similarity between text and images enables applications
such as semantic search, which makes it possible to search for photos based on
natural-language descriptions of their contents or find images similar to an example
image we provide. Applications of these techniques exist in multiple domains, includ‐
ing consumer hardware (such as phones), medical systems, fashion, and others. In
Chapter 2, we proposed a similar challenge, but it is constrained to textual data:
building an FAQ system by computing similarities between the embedding outputs of
an LM. At the end of this chapter, we propose a challenge using CLIP for semantic
search.

CLIP | 103

https://oreil.ly/Anejl


CLIP can also be used to obtain rich embeddings for downstream tasks. For example,
some text-to-image models use CLIP to obtain semantically rich representations of
the prompts supplied by the user.

CLIP was also adopted as an essential tool for generative use cases. The CLIP Guid‐
ance method, developed by Ryan Murdock, Katherine Crowson, and others, uses
CLIP as a loss to guide model gradients toward the desired representation (expressed
with a prompt). This method spawned a creative explosion in the generative art
community. Later, CLIP conditioning became essential in models such as Stable
Diffusion, which we’ll explore in Chapter 5.

CLIP scoring capabilities have also been used to filter and score massive datasets of
image-caption pairs, such as LAION, crawled from Internet sources. Relying on CLIP
allows dataset creators to select pairs where the similarity between the image and the
caption yields a high score and discard the others. This has made it possible to build
and refine datasets in the order of billions of items, which can be used to build better
models that can refine datasets even more precisely. So meta!

Alternatives to CLIP
Because CLIP is extensively used in industry and research, there has been much
activity around the ideas presented in the model and how to make them better,
faster, or adapted to other tasks. A significant effort has been made to make CLIP
fully open source and reproducible. The OpenCLIP repository provides open source
code to implement CLIP and a number of architecture variants. Using the OpenCLIP
codebase and the huge LAION dataset we mentioned in the previous section, the
LAION team trained very powerful CLIP models of various sizes and made all the
checkpoints available for everyone to use.

Recent research has shown that better text understanding can lead to better text-
image models. BLIP, CoCa, and CapPa demonstrate that the captioning task (gener‐
ate a detailed description of what an image represents) can produce models that
are capable of generating excellent image representations and solve a wide range
of vision-language tasks. In parallel research, the use of a different loss function
(sigmoid loss used in SigLIP, instead of softmax normalization) can make training
easier and alleviate CLIP’s problem of requiring huge batch sizes to train effectively.

104 | Chapter 3: Compressing and Representing Information

https://oreil.ly/BR17d
https://oreil.ly/LDL_B
https://oreil.ly/-UcPE
https://oreil.ly/Hkjbj
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2306.07915
https://arxiv.org/abs/2303.15343


Another promising direction is building smaller, faster models that can run on per‐
sonal computers and mobile devices. This is the case with Apple’s MobileCLIP, which
achieves the performance of OpenAI’s CLIP models with much smaller (and faster)
models. Another Apple effort, Data Filtering Networks, aims to improve the quality
of text-image datasets and also trained several CLIP variants with those datasets.

As you’ll see throughout the rest of this book, CLIP is an essential component of
image-generation systems. This healthy research on more robust, capable, and faster
CLIP-like models makes us very optimistic about the future.

Project Time: Semantic Image Search
A fun project is building a semantic search engine for your photos. When you are
done, you should be able to look for photos in your library by simply describing their
contents (for example: “dog jumping into the water on a hot summer day” or “woman
with umbrella walking down a busy street”), instead of trying to remember where in
your collection those photos are stored. You can also use any other image dataset you
like, but using content that means something to you will be rewarding and allow you
to evaluate how well the system works. It may also make you want to think of ideas
for improvement or share them with your family.

These are some suggested steps to tackle the project:

1. Choose a text-image model, such as CLIP, that can produce embeddings for both1.
images and text descriptions. You can explore other alternatives, but CLIP should
be a good start. Choose a family of models with multiple-size variants that you
can easily replace with one another. This way, you can use a small model to
iterate faster while working and see how much performance increases when you
use a larger model.

2. Find a good number of photos and copy them all to a folder on your computer.2.
Several hundred or a thousand photos should be fine.

3. Write a loop to create embeddings from your photos by using the model you3.
chose:
a. Read the photos from disk, crop and/or resize them so that they are the samea.

size, and create a batch. You can use a PyTorch DataLoader, as we did in the
training loops in this chapter. For preprocessing, you may do it manually with
torchvision.transforms, or you can leverage the model’s built-in preproces‐
sor if it exists. Choose a batch size that fits your hardware.

Project Time: Semantic Image Search | 105

https://arxiv.org/abs/2311.17049
https://arxiv.org/abs/2309.17425
https://oreil.ly/PFghl


b. Run each batch of images through the image portion of the CLIP model. Useb.
inference mode (no gradients need to be computed, as you won’t be training
anything).

c. Get the embeddings from the output and save them to disk. You’ll get ac.
multidimensional vector for each image file. You can convert them to numpy
arrays and write them all into the same file. Don’t forget to store the names or
paths to the original photos; you’ll need them to retrieve the photos later.

4. At this point, you have an array of vectors in numpy format. You can now use the4.
text portion of the model to run queries:
a. Write a function that receives an input prompt and generates an embeddinga.

vector using the text tower of the model.
b. Compute the cosine similarity between that vector and all the vectors in theb.

image embedding table. If you have enough RAM, you can do it by simply
using PyTorch’s matmul operation.

c. Sort the outputs and select the top ones.c.
d. Find the images associated with the top scores and visualize them. Do theyd.

match the prompt you used?

Bonus tasks:

• Can you try to find images that look similar to another image? (That is, semantic•
search based on an input image, not a text description.)

• If you have a lot of photos, you may have trouble computing the scores. How•
could you solve this problem? Are there any frameworks or services that help
with this? How many photos does it take to reach the limits of your computer?

• Pretrained models don’t know anything about the subjects that appear in your•
photos. What could you do to be able to search by personal names or places?

• If you are adventurous, you can use MobileCLIP to run the search engine on•
your phone. This is a big challenge in itself; don’t underestimate the effort!

Summary
This chapter showed how learning compressed representations from input data is a
way to capture the dataset’s essential characteristics and how those representations
can be effectively used for many additional downstream tasks. We started this explo‐
ration by looking at a classical system, the AutoEncoder, whose goal is to encode
input samples into a latent space of reduced dimensionality and then recover the
original data points from the latent representations.

106 | Chapter 3: Compressing and Representing Information



By splitting the AutoEncoder into two components—the encoder and the decoder—
we can imagine new applications beyond reconstruction. The encoder, for example,
can be used as a feature extractor. Because it learned the essential features of the input
dataset, we can use it to train other systems, such as classifiers, whose input data are
latent representations. We also explored the idea of using the decoder for generative
purposes. If the latent space is a representation of the original dataset, can we move
to arbitrary points there and see what outputs we get? AutoEncoders, however, have
some limitations for this task because of how they are trained.

The VAE is a special kind of AutoEncoder that tries to achieve “better-behaved”
representations in latent space. By trying to make latent features match a probability
distribution, we can sample from the desired distribution to obtain new random
latent features. If we feed those features to the decoder, we can generate data points
that look like they came from the original dataset. This is a crucial result for genera‐
tive applications. Exploring this further, the fact that the latent space is a compact
representation of the data is an essential idea behind generative systems such as Stable
Diffusion. As we’ll see in more detail in Chapter 5, we can conduct computation in
the latent space that represents images rather than on the raw image data. This has
enabled the training of high-quality image-generation systems that can run fast and
efficiently on consumer hardware.

The final section of the chapter focused on CLIP, a highly influential model developed
and published by OpenAI that encodes image and text data into the same latent
space. New tricks are possible with CLIP that were pretty hard problems to solve.
For example, given an image and a few sentences, we can measure which sentence
matches the image better. Conversely, given a caption and a few image candidates,
we can select the image that best matches the caption. CLIP was published as part of
OpenAI’s DALL·E image-generation project (which was not published itself), and it
spawned a revolution in generative research. CLIP-like models are key components
of Stable Diffusion and other text-to-image models, but they are used for many other
applications: natural-language image retrieval, semantic search, extracting images
that are similar based on content or style, and a lot more.

All of this came about from the initial realization that learning how to compress
data is equivalent to learning about the data. Many variations on these concepts use
different types of data extraction and representation techniques: CNNs, transformers,
or combining the best of both with systems like VQGAN. We just offered a glimpse
of the motivations and ideas behind these foundational blocks with the hope that they
will be useful for navigating this rich and fascinating space.

Summary | 107



Exercises
Most of these exercises are the same ones we proposed during the chapter, compiled
here for your convenience. Depending on your learning style, you may like to work
on them as you go through the chapter, or you may try them all after a first read:

1. How does generation work if the AutoEncoder model is trained with 16 latent1.
dimensions? Can you compare generations between the model with 16 latent
dimensions and the one with just 2?

2. Train the model again with the same parameters we used (just run the code2.
shown in the chapter) but with different random number initialization, and
visualize the latent space. Chances are that the shapes and structure are different.
Is this something you would expect? Why?

3. How good are the image features extracted by the encoder? Explore it by training3.
a number classifier on top of the encoder.

4. When we trained the VAE, we added the reconstruction and KL divergence4.
losses. However, both have different scales. What will happen if we give more
importance to one versus the other? Can you run a few experiments and explain
the results?

5. The VAE we trained uses only two dimensions to represent the mean and the5.
logvar of the distribution. Can you repeat a similar exploration using 16 dimen‐
sions?

You can find the solutions to these exercises and the following challenges in the
book’s GitHub repository.

Challenges
1. BLIP-2 for search. The hands-on project on semantic image search is quite chal‐1.

lenging, but here’s another idea. Can you use the BLIP-2 model for similarity
tasks, just as we did with CLIP in this chapter? How would you go about it, and
how does it compare with CLIP? What other tasks can you solve with BLIP-2?

2. Train your own AutoEncoder or VAE. Humans are trained to look at faces and2.
easily identify unrealistic features. Can you try to train an AutoEncoder and
a VAE for a dataset containing faces, and see what the results look like? You
can start with the Frey Face dataset that was used in the VAE paper—it’s a
homogenous set of monochrome faces from the same person sporting different
facial expressions. If you want to be more ambitious, you can try your hand at
the CelebFaces Attributes dataset, also hosted on the Hugging Face Hub. Another
interesting example could be to try the Oxford pets dataset, also available on the
Hub.

108 | Chapter 3: Compressing and Representing Information

https://oreil.ly/handsonGenAIcode
https://oreil.ly/e_CpT
https://oreil.ly/Vxiln
https://oreil.ly/R75gg
https://oreil.ly/mnpbI
https://oreil.ly/rKMkI
https://oreil.ly/oz8hw
https://oreil.ly/oz8hw


References
Chollet, François. “Variational AutoEncoder.” Keras implementation of a VAE. April

24, 2024. https://oreil.ly/TShML.
Clément, Chadebec. pythae library GitHub repository. 2022. https://oreil.ly/XUGjo.
Ermon, Stefano, et al. “The Variational Auto-Encoder.” In course notes for CS 228 -

Probabilistic Graphical Models. https://oreil.ly/pc0EP.
Esser, Patrick, Robin Rombach, and Bjorn Ommer. “Taming Transformers for High-

Resolution Image Synthesis.” arXiv, June 23, 2021, https://arxiv.org/abs/2012.09841.
Fang, Alex, et al. “Data Filtering Networks.” arXiv, November 6, 2023. https://

arxiv.org/abs/2309.17425.
Floret, François. Deep Learning course materials (2024 version). https://oreil.ly/Csb_F.

Revised VAE handouts (PDF) at https://oreil.ly/456Vq.
Foster, David. Chapter 3, “Variational Autoencoders.” In Generative Deep Learning,

2nd edition. O’Reilly, 2023. https://oreil.ly/TH2aO.
Howard, Jeremy, and Sylvain Gugger. Deep Learning for Coders with fastai & PyTorch.

O’Reilly, 2020. https://oreil.ly/n1M6C.
Kingma, Diederik P., and Max Welling. “Auto-Encoding Variational Bayes.” arXiv,

December 10, 2022. https://arxiv.org/abs/1312.6114.
LAION (various authors). “Large Scale OpenCLIP Trained on LAION-2B.” LAION

blog, September 15, 2022. https://oreil.ly/FBlmH.
Li, Junnan, et al. “BLIP: Bootstrapping Language-Image Pre-training for Unified

Vision-Language Understanding and Generation.” arXiv, February 15, 2022.
https://arxiv.org/abs/2201.12086.

Li, Junnan, et al. “BLIP-2: Bootstrapping Language-Image Pre-training with Fro‐
zen Image Encoders and Large Language Models.” arXiv, June 15, 2023. https://
arxiv.org/abs/2301.12597.

Loong, Jackie. Variational Auto-Encoder for MNIST GitHub repository. https://
oreil.ly/-IRhy.

Maucher, Johannes. “Animations of Convolution and Deconvolution.” In Intro and
Overview Machine Learning lecture notes, 2022. https://oreil.ly/KL8VU.

ML Foundations (various authors). OpenCLIP GitHub repository. https://oreil.ly/
Hkjbj.

PyTorch team. PyTorch VAE example in the PyTorch GitHub repository, January
2017. https://oreil.ly/ZchyF.

Radford, Alec, et al. “Learning Transferable Visual Models From Natural Language
Supervision.” arXiv, February 26, 2021. https://arxiv.org/abs/2103.00020.

References | 109

https://oreil.ly/TShML
https://oreil.ly/XUGjo
https://oreil.ly/pc0EP
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2309.17425
https://arxiv.org/abs/2309.17425
https://oreil.ly/Csb_F
https://oreil.ly/456Vq
https://oreil.ly/TH2aO
https://oreil.ly/n1M6C
https://arxiv.org/abs/1312.6114
https://oreil.ly/FBlmH
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://oreil.ly/-IRhy
https://oreil.ly/-IRhy
https://oreil.ly/KL8VU
https://oreil.ly/Hkjbj
https://oreil.ly/Hkjbj
https://oreil.ly/ZchyF
https://arxiv.org/abs/2103.00020


Stanford University. “Convolutional Layer.” In course notes for CS231n Convolutional
Neural Networks for Visual Recognition, November 2022. https://oreil.ly/Ohh6z.

Tschannen, Michael, et al. “Image Captioners Are Scalable Vision Learners Too.”
arXiv, December 21, 2023. https://arxiv.org/abs/2306.07915.

Vasu, Pavan Kumar Anasosalu, et al. “MobileCLIP: Fast Image-Text Models through
Multi-Modal Reinforced Training.” arXiv, April 1, 2024. https://arxiv.org/abs/
2311.17049. Code repository at https://oreil.ly/DmtWF.

Whitaker, Jonathan. “A Deep Dive into OpenCLIP from OpenAI.” W&B Fully Con‐
nected, November 7, 2022. https://oreil.ly/9SSo1.

Yanagisawa, Chiaki. “Conv2d and ConvTransposed2d.” PowerPoint presentation,
February 19, 2021. https://oreil.ly/JEEl0.

Yu, Jiahui, et al. “Coca: Contrastive Captioners Are Image-Text Foundation Models.”
arXiv, June 14, 2022. https://arxiv.org/abs/2205.01917.

Zhai, Xiaohua, et al. “Sigmoid Loss for Language Image Pre-Training.” arXiv, Septem‐
ber 27, 2023. https://arxiv.org/abs/2303.15343.

110 | Chapter 3: Compressing and Representing Information

https://oreil.ly/Ohh6z
https://arxiv.org/abs/2306.07915
https://arxiv.org/abs/2311.17049
https://arxiv.org/abs/2311.17049
https://oreil.ly/DmtWF
https://oreil.ly/9SSo1
https://oreil.ly/JEEl0
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2303.15343


CHAPTER 4

Diffusion Models

The field of image generation became widely popular with Ian Goodfellow’s introduc‐
tion of Generative Adversarial Nets (GANs) in 2014. The key ideas of GANs led to
a big family of models that could quickly generate high-quality images. However,
despite their success, GANs posed challenges, requiring many parameters and help to
generalize effectively. These limitations sparked parallel research endeavors, leading
to the exploration of diffusion models—a class of models that would redefine the
landscape of high-quality, flexible image generation.

In late 2020, a little-known class of models called diffusion models began causing a stir
in the ML world. Researchers figured out how to use these diffusion models to gener‐
ate higher-quality images than those produced by GANs. A flurry of papers followed,
proposing improvements and modifications that pushed the quality up even further.
By late 2021, models like GLIDE showcased incredible results on text-to-image tasks.
Just a few months later, these models had entered the mainstream with tools like
DALL·E 2 and Stable Diffusion. These models made it easy for anyone to generate
images just by typing in a text description of what they wanted to see.

In this chapter, we will dig into how these models work. We’ll outline the key insights
that make them so powerful, generate images with existing models to get a feel for
how they work, and then train our own to deepen this understanding further. The
field is still rapidly evolving, but the topics covered here should give you a solid
foundation to build on, which will be extended further in Chapters 5, 7, and 8.

The high-level idea of diffusion models is that they receive images blurred with noise
and learn to denoise them, outputting a clear image. When diffusion models are
trained, the dataset contains images with different amounts of noise (even when the
input is pure noise). In inference, we can begin with pure noise, and the model
will generate an image that matches the training distribution. The model does

111



1 There’s a lot of research about reducing the number of diffusion steps in inference; please check Challenge 2
in “Challenges” on page 147 for an initial glimpse into the area.

multiple iterations to accomplish this, correcting itself and leading to impressively
high-quality generations.

The Key Insight: Iterative Refinement
So, what is it that makes diffusion models so powerful? Previous techniques, such as
VAEs or GANs, generate their final output via a single forward pass of the model.
This means the model must get everything right on the first try. If it makes a mistake,
it can’t go back and fix it. Diffusion models, on the other hand, generate their
output by iterating over many steps.1 This iterative refinement allows the model to
correct mistakes in previous steps and gradually improve the output. To illustrate
this, Figure 4-1 shows an example of a diffusion model in action.

Figure 4-1. Progressive denoising process

We can load a pretrained diffusion model using the Hugging Face diffusers library.
The library provides a high-level pipeline that can be used to create images directly.
We’ll load the ddpm-celebahq-256 model, one of the first shared diffusion models
for image generation. This model was trained with the CelebA-HQ dataset, a then-
popular dataset of high-quality images of celebrities, so it will generate images that
look like they came from that dataset. We’ll use this model to generate an image from
noise:

import torch
from diffusers import DDPMPipeline

from genaibook.core import get_device

# Set the device to use our GPU or CPU
device = get_device()

# Load the pipeline
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
image_pipe.to(device)

112 | Chapter 4: Diffusion Models

https://oreil.ly/AoJQf


# Sample an image
image_pipe().images[0]

The pipeline does not show us what happens under the hood, so let’s dive into its
internals. If you run the code, you will notice that generation took 1,000 steps. This
diffusion pipeline has to go through 1,000 refinement steps (and forward passes) to
get to the final image. This is one of the major drawbacks of the vanilla diffusion
models compared to the GANs—they require many steps to generate high-quality
images, making the models slow at inference time.

We can re-create this sampling process step-by-step to understand better what is
happening under the hood. At the beginning of the diffusion process, we initialize
our sample x with a batch of four random images (in other words, we sample some
random noise). We’ll run 30 steps to progressively denoise the input images and end
up with a sample from the real distribution.

Let’s generate some images! On the left side of the following image, you can see the
input at a given step (beginning with the random noise). You can see the model’s
prediction for the final images on the right. The results of the first row are not
particularly good. Instead of jumping right to that final predicted image in a given
diffusion step, we only modify the input x (shown on the left) by a small amount in
the direction of the prediction. We then feed this new, slightly better x through the
model again for the next step, hopefully resulting in a slightly improved prediction,
which can be used to update x a little more, and so on. With enough steps, the model
can produce some impressively realistic images:

from genaibook.core import plot_noise_and_denoise

# The random starting point is a batch of 4 images
# Each image is 3-channel (RGB) 256x256 pixel image
image = torch.randn(4, 3, 256, 256).to(device)

# Set the specific number of diffusion steps
image_pipe.scheduler.set_timesteps(num_inference_steps=30)

The Key Insight: Iterative Refinement | 113



# Loop through the sampling timesteps
for i, t in enumerate(image_pipe.scheduler.timesteps):
    # Get the prediction given the current sample x and the timestep t
    # As we're running inference, we don't need to calculate gradients,
    # so we can use torch.inference_mode().
    with torch.inference_mode():
        # We need to pass in the timestep t so that the model knows what
        # timestep it's currently at. We'll learn more about this in the
        # coming sections.
        noise_pred = image_pipe.unet(image, t)["sample"]

    # Calculate what the updated x should look like with the scheduler
    scheduler_output = image_pipe.scheduler.step(noise_pred, t, image)

    # Update x
    image = scheduler_output.prev_sample

    # Occasionally display both x and the predicted denoised images
    if i % 10 == 0 or i == len(image_pipe.scheduler.timesteps) - 1:
        plot_noise_and_denoise(scheduler_output, i)

Don’t worry if that chunk of code looks intimidating—we’ll explain how this all works
throughout this chapter. Focus on the idea for now.

114 | Chapter 4: Diffusion Models



This core idea of learning how to iteratively refine a noisy input can be applied to
a wide range of tasks. This chapter will focus on unconditional image generation,
generating images that resemble the training data distribution. For example, we can
train an unconditional image-generation model with a dataset of butterflies so that it
can also generate new, high-quality images. This model would not be able to create
images different from the distribution of its training dataset, so don’t expect it to
generate dinosaurs.

In Chapter 5, we’ll do a deep dive into diffusion models conditioned on text, but we
can do many other things. Diffusion models have been applied to audio, video, text,
3D objects, protein structures, and other domains. While most implementations use
some variant of the denoising approach we’ll cover here, emerging approaches that
apply different types of “corruption” (always combined with iterative refinement) may
move the field beyond the current focus on denoising diffusion.

Training a Diffusion Model
In this section, we’re going to train a diffusion model from scratch to gain a better
understanding of how they work. We’ll start by using components from the diffusers
library. As the chapter progresses, we’ll gradually demystify how each component
works. Training a diffusion model is relatively straightforward compared to other
generative models. To train a model, we repeatedly do the following:

1. Load some images from the training data.1.
2. Add noise in different amounts. Remember, we want the model to do a good job2.

estimating how to “fix” (denoise) both extremely noisy images and images that
are close to perfect, so we want a dataset with diverse amounts of noise.

3. Feed the noisy versions of the inputs into the model.3.
4. Evaluate how well the model does at denoising these inputs.4.
5. Use this information to update the model weights.5.

To generate new images with a trained model, we begin with a completely random
input and repeatedly feed it through the model, updating the input on each iteration
by a small amount based on the model prediction. As we’ll see, several sampling
methods streamline this process to generate good images with as few steps as
possible.

Training a Diffusion Model | 115



2 This is a subset of a dataset compiled by Ceyda Cinarel with butterflies extracted from the Smithsonian
Institute.

The Data
For this example, we’ll use a dataset of images from the Hugging Face Hub—specifi‐
cally, a collection of 1,000 butterfly pictures.2 Later on, in “Project Time: Train Your
Diffusion Model” on page 145, you will see how to use your own data. Let’s load the
butterflies dataset:

from datasets import load_dataset

dataset = load_dataset("huggan/smithsonian_butterflies_subset", split="train")

We must prepare the data before using it to train a model. Images are typically repre‐
sented as a grid of pixels. Unlike in the previous chapter, where we used grayscale
images, these images are in color. Each pixel is represented with color values between
0 and 255 for each of the three color channels (red, green, and blue). To process these
and make them ready for training, we do the following:

1. Resize them to a fixed size. This is necessary because the model expects all1.
images to have the same dimensions.

2. (Optional) Add some augmentation by randomly flipping them horizontally,2.
making the model more robust and allowing us to train with more data. Aug‐
mentation (Figure 4-2) is a common practice in Computer Vision tasks, as it
helps the model generalize better to unseen data. Flipping is just one technique
of augmentation with image data. Other techniques are translating, scaling, and
rotating.

Figure 4-2. Augmentation creates more data from the training dataset, improving
generalization

3. Convert them to a PyTorch tensor (representing the color values as floats3.
between 0 and 1). Model inputs must always be formatted as multidimensional
matrices, or tensors.

116 | Chapter 4: Diffusion Models

https://oreil.ly/HTDlA


3 torchvision is a PyTorch library that provides a wide range of tools for working with images. In the book, we’ll
use this library only for data preprocessing transformations.

4 We used images larger than 64 × 64 to print beautiful butterflies in the book instead of pixelated ones.

4. Normalize them to have a mean of 0, with values between –1 and 1. This is a4.
common practice in training deep learning models, as it helps the model learn
faster and more effectively.

We can define these transformations by using torchvision.transforms:3

from torchvision import transforms

image_size = 64

# Define transformations
preprocess = transforms.Compose(
    [
        transforms.Resize((image_size, image_size)),  # Resize
        transforms.RandomHorizontalFlip(),  # Randomly flip (data augmentation)
        transforms.ToTensor(),  # Convert to tensor (0, 1)
        transforms.Normalize([0.5], [0.5]),  # Map to (-1, 1)
    ]
)

The datasets library provides a convenient method, set_transform(), which allows
us to specify transformations that will be applied on the fly as the data is used. Finally,
we can wrap the dataset with a DataLoader, a loading utility that makes it easy to
iterate over batches of data, simplifying our training code:

def transform(examples):
    examples = [preprocess(image) for image in examples["image"]]
    return {"images": examples}

dataset.set_transform(transform)
batch_size = 16

train_dataloader = torch.utils.data.DataLoader(
    dataset, batch_size=batch_size, shuffle=True
)

We can check that this worked by loading a batch and inspecting the images. Here’s
an example batch from the training set:4

from genaibook.core import show_images

batch = next(iter(train_dataloader))

Training a Diffusion Model | 117



# When we normalized, we mapped (0, 1) to (-1, 1)
# Now we map back to (0, 1) for display
show_images(batch["images"][:8] * 0.5 + 0.5)

Adding Noise
How do we gradually corrupt our data? The most common approach is to add noise
to the images. We will add different amounts of noise to the training data, as the goal
is to train a robust model to denoise no matter how much noise is in the input. The
amount of noise we add is controlled by a noise schedule, which is a critical aspect of
diffusion models. Different papers and approaches tackle this in different ways.

For now, let’s explore one common approach in action based on the DDPM paper. In
diffusers, adding noise is handled by a class called a Scheduler, which takes in a batch
of images and a list of timesteps and determines how to create the noisy versions of
those images. We’ll explore the math behind this later in the chapter, but for now, let’s
see how it works in practice. The following code snippet applies increasingly larger
amounts of noise to each one of the input images:

from diffusers import DDPMScheduler

# We'll learn about beta_start and beta_end in the next sections
scheduler = DDPMScheduler(
    num_train_timesteps=1000, beta_start=0.001, beta_end=0.02
)

# Create a tensor with 8 evenly spaced values from 0 to 999
timesteps = torch.linspace(0, 999, 8).long()

# We load 8 images from the dataset and
# add increasing amounts of noise to them
x = batch["images"][:8]

118 | Chapter 4: Diffusion Models

http://arxiv.org/abs/2006.11239


noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

During training, we’ll pick the timesteps at random. The scheduler takes some
parameters (beta_start and beta_end), which it uses to determine how much noise
should be present for a given timestep. We will cover schedulers in more detail in “In
Depth: Noise Schedules” on page 126.

The UNet
The UNet is a CNN invented for tasks such as image segmentation, where the desired
output has the same shape as the input. For example, UNets are used in medical
imaging to segment different anatomical structures.

As shown in Figure 4-3, the UNet consists of a series of downsampling layers that
reduce the spatial size of the input, followed by a series of upsampling layers that
increase the spatial extent of the input again. The downsampling layers are typically
followed by skip connections that connect the downsampling layers’ outputs to the
upsampling layers’ inputs. This allows the upsampling layers to incorporate finer
details from earlier layers, preserving important high-resolution information during
the denoising process.

The UNet architecture used in the diffusers library is more advanced than the original
UNet proposed in 2015, with additions like attention and residual blocks. We’ll take
a closer look later, but the key idea here is that it can take in an input and produce
a prediction that is the same shape. In diffusion models, the input can be a noisy
image, and the output can be the predicted noise. With this information, we can now
denoise the input image.

Training a Diffusion Model | 119

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597


Figure 4-3. Architecture of a simplified UNet

Here’s how we might create a UNet and feed our batch of noisy images through it:

from diffusers import UNet2DModel

model = UNet2DModel(
    in_channels=3,  # 3 channels for RGB images
    sample_size=64,  # Specify our input size
    # The number of channels per block affects the model size
    block_out_channels=(64, 128, 256, 512),
    down_block_types=(
        "DownBlock2D",
        "DownBlock2D",
        "AttnDownBlock2D",
        "AttnDownBlock2D",
    ),
    up_block_types=("AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D"),
).to(device)

# Pass a batch of data through to make sure it works
with torch.inference_mode():
    out = model(noised_x.to(device), timestep=timesteps.to(device)).sample

print(noised_x.shape)
print(out.shape)

torch.Size([8, 3, 64, 64])
torch.Size([8, 3, 64, 64])

Note that the output is the same shape as the input, which is exactly what we want.

120 | Chapter 4: Diffusion Models



Training
Now that we have our data and model ready, let’s train it. For each training step, we
do the following:

1. Load a batch of images.1.
2. Add noise to the images. The amount of noise added depends on a specified2.

number of timesteps: the more timesteps, the more noise. As mentioned, we
want our model to denoise images with little noise and images with lots of noise.
To achieve this, we’ll add random amounts of noise, so we’ll pick a random
number of timesteps.

3. Feed the noisy images into the model.3.
4. Calculate the loss using MSE. MSE is a common loss function for regression4.

tasks, including the UNet model’s noise prediction. It measures the average
squared difference between predicted and true values, penalizing larger errors
more. In the UNet model, MSE is calculated between predicted and actual noise,
helping the model generate more realistic images by minimizing the loss. This is
called the noise or epsilon objective.

5. Backpropagate the loss and update the model weights with the optimizer.5.

Here’s what all of that looks like in code. Training will take a while, so this is a great
moment to pause, review the chapter’s content, or get some food:

from torch.nn import functional as F

num_epochs = 50  # How many runs through the data should we do?
lr = 1e-4  # What learning rate should we use
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
losses = []  # Somewhere to store the loss values for later plotting

# Train the model (this takes a while)
for epoch in range(num_epochs):
    for batch in train_dataloader:
        # Load the input images
        clean_images = batch["images"].to(device)

        # Sample noise to add to the images
        noise = torch.randn(clean_images.shape).to(device)

        # Sample a random timestep for each image
        timesteps = torch.randint(
            0,
            scheduler.config.num_train_timesteps,
            (clean_images.shape[0],),
            device=device,
        ).long()

Training a Diffusion Model | 121



        # Add noise to the clean images according
        # to the noise magnitude at each timestep
        noisy_images = scheduler.add_noise(clean_images, noise, timesteps)

        # Get the model prediction for the noise
        # The model also uses the timestep as an input
        # for additional conditioning
        noise_pred = model(noisy_images, timesteps, return_dict=False)[0]

        # Compare the prediction with the actual noise
        loss = F.mse_loss(noise_pred, noise)

        # Store the loss for later plotting
        losses.append(loss.item())

        # Update the model parameters with the optimizer based on this loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

Now that the model is trained, let’s plot the training loss:

from matplotlib import pyplot as plt

plt.subplots(1, 2, figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(losses)
plt.title("Training loss")
plt.xlabel("Training step")

plt.subplot(1, 2, 2)
plt.plot(range(400, len(losses)), losses[400:])
plt.title("Training loss from step 400")
plt.xlabel("Training step");

122 | Chapter 4: Diffusion Models



5 The images were generated by the model we trained at a resolution of 64 × 64 and upscaled, so they’ll look
pixelated.

The loss curve on the left shows all the steps, while that on the right skips the first 400
steps. The loss curve trends downward as the model learns to denoise the images. The
curve is somewhat noisy—the loss is not very stable. This is because each iteration
uses different numbers of noising time steps. It is hard to tell whether this model will
be good at generating samples by looking at the MSE of the noise predictions, so let’s
move on to the next section and see how well it does.

Sampling
Now that we have a model, let’s do inference and generate some images. The diffusers
library uses the idea of pipelines to bundle together all the components needed to
generate samples with a diffusion model. We can use a pipeline to test the UNet we
just trained; a few generations are shown as follows:5

pipeline = DDPMPipeline(unet=model, scheduler=scheduler)
ims = pipeline(batch_size=4).images
show_images(ims, nrows=1)

Offloading the job of creating samples to the pipeline doesn’t show us what is going
on under the hood. So, let’s do a simple sampling loop showing how the model
gradually refines the input image based on the code in the pipeline’s call() method:

# Random starting point (4 random images):
sample = torch.randn(4, 3, 64, 64).to(device)

for t in scheduler.timesteps:
    # Get the model prediction
    with torch.inference_mode():
        noise_pred = model(sample, t)["sample"]

    # Update sample with step
    sample = scheduler.step(noise_pred, t, sample).prev_sample

show_images(sample.clip(-1, 1) * 0.5 + 0.5, nrows=1)

Training a Diffusion Model | 123



This is the same code we used at the beginning of the chapter to illustrate the idea of
iterative refinement, but now you better understand what is happening here. If you
look at the implementation of the DDPMPipeline in the diffusers library, you’ll see that
the logic closely resembles our implementation in the previous snippet.

We start with a completely random input, which the model then refines in a series
of steps. Each step is a small update to the input based on the model’s prediction for
the noise at that timestep. We’re still abstracting away some complexity behind the
call to pipeline.scheduler.step(); later, we will dive deeper into different sampling
methods and how they work.

Evaluation
Evaluating generative models is complex—it’s a subjective task in nature. For exam‐
ple, given an input prompt “image of a cat with sunglasses”, there are many potential
correct generations. A common approach is to combine qualitative evaluation (e.g.,
by having humans compare generations) and quantitative metrics, which provide a
framework for evaluation but don’t necessarily correspond to high image quality.

Fréchet Inception Distance (FID) scores can evaluate generative model performance.
FID scores compare how similar two image datasets are. Using a pretrained neural
network (an example is shown in Figure 4-4), they measure how closely generated
samples match real samples by comparing statistics between feature maps extracted
from both datasets. The lower the score, the better the quality and realism of gener‐
ated images produced by a given model. FID scores are popular because of their
ability to provide an “objective” comparison metric for different types of generative
networks without relying on human judgment.

Figure 4-4. CNN network used to extract feature maps from images

124 | Chapter 4: Diffusion Models



6 ImageNet is one of the most popular Computer Vision benchmarks. It contains millions of images in
thousands of categories, making it a popular dataset for training and benchmarking base models.

As convenient as FID scores are, there are important caveats to be aware of (which
might be true for other evaluation metrics as well):

• FID scores are designed to compare two distributions. Because of this, it assumes•
that we have access to a source dataset for comparison. A second issue is that
you cannot calculate the FID score of a single generation. If we have one image,
there’s no way to calculate its FID score.

• The FID score for a given model depends on the number of samples used to•
calculate it, so when comparing models, we need to make sure both reported
scores are calculated using the same number of samples. The common practice is
to use 50,000 samples for this purpose, although to save time, you may evaluate
a smaller number during development and do the complete evaluation only after
you’re ready to publish the results.

• The FID can be sensitive to many factors. For example, a different number of•
inference steps will lead to a very different FID. The scheduler (DDPM in this
case) will also affect the FID.

• When calculating the FID, images are resized to 299 × 299 images. This makes•
it less useful as a metric for extremely low- or high-resolution images. There
are also minor differences between how resizing is handled by different deep
learning frameworks, which can result in slight differences in the FID score.

• The network used as a feature extractor for FID is typically a model trained•
on the ImageNet classification task.6 When generating images in a different
domain, the features learned by this model may be less useful. A more accurate
approach is to first train a classification network on domain-specific data, mak‐
ing comparing scores between different papers and techniques harder. For now,
the ImageNet model is the standard choice.

• If you save generated samples for later evaluation, the format and compression•
can affect the FID score. Avoid low-quality JPEG images where possible.

Even if you account for all these caveats, FID scores are just a rough measure of qual‐
ity and do not perfectly capture the nuances of what makes images look more “real.”
The evaluation of generative models is an active research area. Standard metrics like
Kernel Inception Distance (KID) and Inception Score share similar issues with FID.
So, use these metrics to get an idea of how one model performs relative to another,
but also look at the actual images generated by each model to get a better sense of
how they compare.

Training a Diffusion Model | 125



7 For a practical deep dive into evaluating diffusion models, we suggest reviewing the diffusers library’s “Evalu‐
ating Diffusion Models” documentation.

8 The Gaussian noise is added with torch.rand_like().

Image quality, as measured by FID or KID, is only one of the metrics we can use to
evaluate the performance of text-to-image models. Efforts such as Holistic Evaluation
of Text-to-Image Models (HEIM) attempt to take into account additional desirable
characteristics of text-to-image models, such as prompt adherence, originality, rea‐
soning capabilities, multilingualism, absence of bias and toxicity, and others.

Human preference is still the gold standard for quality in what is ultimately a fairly
subjective field. For example, the Parti Prompts dataset contains 1,600 prompts of
varying difficulties and categories and allows comparing text-to-image models such
as the ones we’ll explore in Chapter 5.7

In Depth: Noise Schedules
In the preceding training example, one of the steps was to “add noise in different
amounts.” We achieved this by picking a random timestep between 0 and 1,000 and
then relying on the scheduler to add the appropriate amount of noise. Likewise,
during inference, we again relied on the scheduler to tell us which timesteps to use
and how to move from one to the next, given the model predictions. Choosing
how much noise to add is a crucial design decision that can drastically affect the
performance of a given model. In this section, we’ll see why this is the case and
explore different approaches used in practice.

Why Add Noise?
At the start of this chapter, we said that the key idea behind diffusion models is that
of iterative refinement. During training, we corrupt an input by different amounts.
During inference, we begin with a maximally corrupted input (that is, a pure noise
image) and iteratively decorrupt it, expecting to end up with a nice final result
eventually.

So far, we’ve focused on one specific kind of corruption: adding Gaussian noise.
Gaussian noise is a type of noise that follows a normal distribution, which as we saw
in Chapter 3, has most values around the mean and fewer values as we get further
away.8 One reason for this focus is the theoretical underpinnings of diffusion models,
which assume the use of Gaussian noise—if we use a different corruption method, we
are no longer technically doing diffusion.

126 | Chapter 4: Diffusion Models

https://oreil.ly/KXujR
https://oreil.ly/KXujR
https://oreil.ly/G-o44
https://oreil.ly/G-o44
https://oreil.ly/GebH2


However, the Cold Diffusion paper demonstrated that we do not necessarily need
to constrain ourselves to this method just for theoretical convenience. The authors
showed (Figure 4-5) that a diffusion model–like approach works for many corruption
methods. That means that rather than using noise, we can use other image transfor‐
mations. For example, models such as Muse, MaskGIT, and Paella have used random
token masking or replacement as equivalent corruption methods.

Figure 4-5. The general principles of diffusion work for other types of corruption, not just
Gaussian noise (adapted from an image in the Cold Diffusion paper)

Nonetheless, adding noise remains the most popular approach for several reasons:

• We can easily control the amount of noise added, giving a smooth transition•
from “perfect” to “completely corrupted.” This is not the case for something like
reducing the resolution of an image, which may result in “discrete” transitions.

• We can have many valid random starting points for inference, unlike some meth‐•
ods, which may have only a limited number of possible initial (fully corrupted)
states, such as a completely black image or a single-pixel image.

So, for now, we’ll add noise as our corruption method. Next, let’s explore how we add
noise to our images.

In Depth: Noise Schedules | 127

http://arxiv.org/abs/2208.09392
https://arxiv.org/pdf/2208.09392


Starting Simple
We have some images, x, and we’d like to add some random noise to them. We
generate pure Gaussian noise of the same dimensions as the input images with
torch.rand_like():

x = next(iter(train_dataloader))["images"][:8]
noise = torch.rand_like(x)

One way we could add varying amounts of noise is to linearly interpolate (“lerp” for
short) between the images and the noise by some amount. This gives us a function
that smoothly transitions from the original image x to pure noise as the amount varies
from 0 to 1:

def corrupt(x, noise, amount):
    # Reshape amount so it works correctly with the original data
    amount = amount.view(-1, 1, 1, 1)  # make sure it's broadcastable

    # Blend the original data and noise based on the amount
    return (
        x * (1 - amount) + noise * amount
    )  # equivalent to x.lerp(noise, amount)

Let’s see this in action on a batch of data, with the amount of noise varying from
0 to 1:

amount = torch.linspace(0, 1, 8)
noised_x = corrupt(x, noise, amount)
show_images(noised_x * 0.5 + 0.5)

128 | Chapter 4: Diffusion Models



This is doing what we want: smoothly transitioning from the original image to pure
noise. We’ve created a noise schedule with the continuous time approach, where we
represent the full path on a time scale from 0 to 1. Other approaches use a discrete
time approach, with a large integer number of timesteps used to define the noise
scheduler. We can wrap our function into a class that converts from continuous time
to discrete timesteps and adds noise appropriately:

class SimpleScheduler:
    def __init__(self):
        self.num_train_timesteps = 1000

    def add_noise(self, x, noise, timesteps):
        amount = timesteps / self.num_train_timesteps
        return corrupt(x, noise, amount)

scheduler = SimpleScheduler()
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images(noised_x * 0.5 + 0.5)

Now we have something we can directly compare to the schedulers used in the
diffusers library, such as the DDPMScheduler we used during training. Let’s see how it
compares:

scheduler = DDPMScheduler(beta_end=0.01)
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

In Depth: Noise Schedules | 129



If you compare the results from our scheduler with those of DDPMScheduler, you
may notice that they are not exactly the same, but they’re similar enough to explore
training the model with our noise scheduler.

The Math
Let’s dive into the underlying math that explains how noise is added to the original
images. One thing to remember is that there are many notations and approaches
in the literature. For example, in some papers, the noise schedule is parametrized
continuously, so t runs from 0 (no noise) to 1 (fully corrupted), as we did in our
corrupt function. Other papers use a discrete time approach in which the timesteps
are integers and run from 0 to a large number T, typically 1,000. It is possible to
convert between these two approaches the way we did with our SimpleScheduler
class—make sure you’re consistent when comparing different models. We’ll stick with
the discrete time approach here.

A good place to start for going deeper into the math is the DDPM paper or the
“Annotated Diffusion Model” blog post. If you feel this section is too dense, it’s OK to
focus on the high-level concepts and come back to the math later on.

Let’s kick things off by defining how to do a single noise step to go from timestep t – 1
to timestep t. As mentioned earlier, the idea is to add Gaussian noise (ϵ). The noise
has unit variance, which controls the spread of the noise values. By adding this noise
to the previous step’s image, we gradually corrupt the original image, which is a key
part of the diffusion model’s training process:

xt = xt − 1 + ϵ

130 | Chapter 4: Diffusion Models

https://oreil.ly/mFHxe


To control the amount of noise added at each step, let’s introduce βt. This parameter
is defined for all timesteps t and specifies how much noise should be added at each
step. In other words, xt is a mix of xt − 1 and some random noise scaled by βt. This
allows us to gradually increase the amount of noise added to the image as we move
through the timesteps, which is a key part of the diffusion model’s training process:

xt = 1 − βtxt − 1 + βtϵ

We can further define the noise addition process as a distribution, where the noisy
xt has a mean 1 − βtxt − 1 and a variance of βt. This distribution helps us model
the noise addition process more accurately. This is what the formula looks like in
distribution form:

q xt xt − 1 = N xt; 1 − βtxt − 1,βtI

We’ve now defined a distribution to sample x conditioned on the previous value.
To get the noisy input at timestep t, we could begin at t = 0 and repeatedly apply
this single step, which would be very inefficient. Instead, we can find a formula to
move to any timestep t in one go by doing the reparameterization trick. The idea
is to precompute the noise schedule, which is defined by the βt values. We can
then define αt = 1 − βt and α as the cumulative product of all the α values up to
time t, which can be expressed as αt : = Πs = 1

t αs. Using these tools and notation,
we can redefine the distribution and how to sample at a particular time. The new
distribution, q xt xt − 1 , has a mean of αtxt − 1 and a variance of 1 − αt I:

q xt xt − 1 = N xt;αtxt − 1, 1 − αt I

Exploring this reparameterization trick is part of the challenges at the end of the
chapter. We can now sample a noisy image at timestep t by using the following
formula:

xt = αtx0 + 1 − αtϵ

The equation for xt shows that the noisy input at timestep t is a combination of the
original image x0 (scaled by αt) and ϵ (scaled by 1 − αt). Note that we can now
calculate a sample directly without looping over all previous timesteps, making it
much more efficient for training diffusion models.

In Depth: Noise Schedules | 131



In the diffusers library, the α values are stored in scheduler.alphas_cumprod. Know‐
ing this, we can plot the scaling factors for the original image x0 and the noise
ϵ across the different timesteps for a given scheduler. The diffusers library allows
us to control the beta values by defining its initial value (beta_start), final value
(beta_end), and how the values will step, for example, linearly (beta_schedule="lin
ear"). The following plot for the DDPMScheduler describes the amount of noise
(orange line) added to the input image (blue line). We can see that the noise is scaled
up more as we have more timesteps, as expected:

from genaibook.core import plot_scheduler

plot_scheduler(
    DDPMScheduler(beta_start=0.001, beta_end=0.02, beta_schedule="linear")
)

Our SimpleScheduler just linearly mixes between the original image and noise, as we
can see if we plot the scaling factors (equivalent to αt and 1 − αt  in the DDPM
case):

plot_scheduler(SimpleScheduler())

132 | Chapter 4: Diffusion Models



A good noise schedule will ensure the model sees a mix of images at different noise
levels. The best choice will differ based on the training data. Visualizing a few more
options, note the following:

• Setting beta_end too low means we never completely corrupt the image, so the•
model will never see anything like the random noise used as a starting point for
inference.

• Setting beta_end extremely high means that most of the timesteps are spent on•
almost complete noise, resulting in poor training performance.

• Different beta schedules give different curves. The cosine schedule is popular, as•
it smoothly transitions from the original image to the noise.

Let’s visualize the comparison of different DDPMScheduler schedulers, varying hyper‐
parameters and β schedules, with the following plot:

fig, (ax) = plt.subplots(1, 1, figsize=(8, 5))
plot_scheduler(
    DDPMScheduler(beta_schedule="linear"),
    label="default schedule",
    ax=ax,
    plot_both=False,
)
plot_scheduler(
    DDPMScheduler(beta_schedule="squaredcos_cap_v2"),
    label="cosine schedule",
    ax=ax,
    plot_both=False,
)

In Depth: Noise Schedules | 133



plot_scheduler(
    DDPMScheduler(beta_start=0.001, beta_end=0.003, beta_schedule="linear"),
    label="Low beta_end",
    ax=ax,
    plot_both=False,
)
plot_scheduler(
    DDPMScheduler(beta_start=0.001, beta_end=0.1, beta_schedule="linear"),
    label="High beta_end",
    ax=ax,
    plot_both=False,
)

All the schedules shown here are called variance preserving (VP),
meaning that the variance of the model input is kept close to
1 across the entire schedule. You may also encounter variance
exploding (VE), formulations where noise is added to the original
image in different amounts (resulting in high-variance inputs). Our
SimpleScheduler is almost a VP schedule, but the variance is not
quite preserved because of the linear interpolation.

The importance of exposing the model to a good mix of noised images—including
pure noise, which is the initial state for inference—was explored in a paper titled
“Common Diffusion Noise Schedules and Sample Steps Are Flawed”, which showed
that some diffusion models were not able to generate images too bright or too dark
because the training schedule didn’t cover all states. As with many diffusion-related
topics, a constant stream of new papers is exploring the topic of noise schedules, so

134 | Chapter 4: Diffusion Models

https://arxiv.org/abs/2305.08891


9 The diffusers documentation page on schedulers can be a good place to get started with the multiple
schedulers variants.

by the time you read this, there will likely be an extensive collection of options to
try out.9

Effect of Input Resolution and Scaling
One aspect of noise schedules that has mostly been overlooked until recently is
the effect of the input size and scaling. Many papers test potential schedulers on
small-scale datasets and at low resolution and then use the best-performing scheduler
to train their final models on larger images. The problem with this can be seen
if we add the same amount of noise to two images of different sizes, as shown in
Figure 4-6.

Figure 4-6. Applying the same amount of input noise to images with different resolutions

Images at high resolution tend to contain a lot of redundant information. This means
that even if a single pixel is obscured by noise, the surrounding pixels have enough
information to reconstruct the original image. This is different for low-resolution
images, where a single pixel can contain a lot of useful information. Adding the same
amount of noise to a low-resolution image will result in a much more corrupted
image than adding the equivalent amount of noise to a high-resolution image.

Two independent papers from early 2023 thoroughly investigated this effect. Each
used the new insights to train models capable of generating high-resolution outputs
without requiring any of the tricks that have previously been necessary. Simple
diffusion introduced a method for adjusting the noise schedule based on the input
size, allowing a schedule optimized on low-resolution images to be appropriately
modified for a new target resolution. The other paper performed similar experiments
and noted another critical variable: input scaling. That is, how do we represent our
images? If the images are represented as floats between 0 and 1, they will have a
lower variance than the noise (typically unit variance). Thus, the signal-to-noise

In Depth: Noise Schedules | 135

https://oreil.ly/EFrxh
http://arxiv.org/abs/2301.11093
http://arxiv.org/abs/2301.11093
http://arxiv.org/abs/2301.10972


ratio will be lower for a given noise level than if the images were represented as
floats between –1 and 1 (which we used in the preceding training example) or
something else. Scaling the input images shifts the signal-to-noise ratio, so modifying
this scaling is another way to adjust when training on larger images. This paper, in
fact, recommends input scaling as an easy way to adapt training for different image
sizes. It is also possible to adjust the noise schedule depending on the resolution, but
then it’s more difficult to find the optimal schedule because several hyperparameters
are involved. Here we see the effect of input scaling:

import numpy as np
from genaibook.core import load_image, SampleURL

scheduler = DDPMScheduler(beta_end=0.05, beta_schedule="scaled_linear")
image = load_image(
    SampleURL.DogExample,
    size=((512, 512)),
    return_tensor=True,
)

t = torch.tensor(300)  # The timestep we're noising to
scales = np.linspace(0.1, 1.0, 4)

images = [image]
noise = torch.randn_like(image)
for b in reversed(scales):
    noised = (
        scheduler.add_noise(b * (image * 2 - 1), noise, t).clip(-1, 1) * 0.5
        + 0.5
    )
    images.append(noised)

show_images(
    images[1:],
    nrows=1,
    titles=[f"Scale: {b}" for b in reversed(scales)],
    figsize=(15, 5),
)

136 | Chapter 4: Diffusion Models



10 In this regime, input images are normalized before being passed to the model to not reduce variance so
drastically.

11 Pooling is the method to choose the information to preserve when downsampling the output from a previous
layer. Common strategies include average pooling, which reduces a patch to its average value, or max pooling,
which selects the maximum value in a given patch. Pooling is applied independently to all the channels of the
input tensor.

All the images have the same input noise applied, corresponding to step t=300, but
we multiply the input image by different scale factors. The noise is more noticeable
as the scale affects the image more. The scale also decreases the dynamic range (or
variance), resulting in darker-looking inputs.10

In Depth: UNets and Alternatives
Let’s address the actual model that makes the all-important predictions. To recap, this
model must be capable of taking in a noisy image and outputting its noise, hence ena‐
bling denoising the input image. This requires a model that can take in an image of
arbitrary size and output an image of the same size. Furthermore, the model should
be able to make precise predictions at the pixel level while capturing higher-level
information about the image. A popular approach is to use an architecture called a
UNet. UNets were invented in 2015 for medical image segmentation and have since
become a popular choice for various image-related tasks.

Like the AutoEncoders and VAEs we looked at in the previous chapter, UNets are
made up of a series of downsampling and upsampling blocks. The downsampling
blocks are responsible for reducing the image size, while the upsampling blocks are
responsible for increasing the image size. The downsampling blocks typically com‐
prise a series of convolutional layers, followed by a pooling or downsampling layer.11

The upsampling blocks generally include a series of convolutional layers, followed by
an upsampling or transposed convolution layer. The transposed convolution layer is a
particular type of convolutional layer that increases the size of the image rather than
reducing it.

Regular AutoEncoders and VAE are not good choices for this task because they
are less capable of making precise predictions at the pixel level since they must
reconstruct the images from the low-dimensional latent space. In a UNet, the down‐
sampling and upsampling blocks are connected by skip connections, which allow
information to flow directly from the downsampling blocks to the upsampling blocks.
This allows the model to make precise predictions at the pixel level while also
capturing higher-level information about the image as a whole.

In Depth: UNets and Alternatives | 137



A Simple UNet
To better understand the structure of a UNet, let’s build a simple one from scratch.
Figure 4-7 shows the architecture diagram of a basic UNET.

Figure 4-7. Architecture of a basic UNet

We’ll design a UNet that works with single-channel images (e.g., grayscale images),
which we could use to build a diffusion model for datasets such as MNIST. We’ll
use three layers in the downsampling path and another three in the upsampling
path. Each layer consists of a convolution followed by an activation function and an
upsampling or downsampling step, depending on whether they are in the encoding
or decoding path. The skip connections, as mentioned, directly connect the down‐
sampling blocks to the upsampling ones. There are multiple ways to implement the
skip connections.

One approach, which we’ll use here, is to add the output of the downsampling block
to the input of the corresponding upsampling block. Another method is concatenat‐
ing the downsampling block’s output to the upsampling block’s input. We could even
add some additional layers in the skip connections.

138 | Chapter 4: Diffusion Models



Let’s keep things simple for now with the initial approach. Here’s what this network
looks like in code:

from torch import nn

class BasicUNet(nn.Module):
    """A minimal UNet implementation."""

    def __init__(self, in_channels=1, out_channels=1):
        super().__init__()
        self.down_layers = nn.ModuleList(
            [
                nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
                nn.Conv2d(32, 64, kernel_size=5, padding=2),
                nn.Conv2d(64, 64, kernel_size=5, padding=2),
            ]
        )
        self.up_layers = nn.ModuleList(
            [
                nn.Conv2d(64, 64, kernel_size=5, padding=2),
                nn.Conv2d(64, 32, kernel_size=5, padding=2),
                nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
            ]
        )

        # Use the SiLU activation function, which has been shown to work well
        # due to different properties (smoothness, non-monotonicity, etc.).
        self.act = nn.SiLU()
        self.downscale = nn.MaxPool2d(2)
        self.upscale = nn.Upsample(scale_factor=2)

    def forward(self, x):
        h = []
        for i, l in enumerate(self.down_layers):
            x = self.act(l(x))
            if i < 2:  # For all but the third (final) down layer:
                h.append(x)  # Storing output for skip connection
                x = self.downscale(x)  # Downscale ready for the next layer

        for i, l in enumerate(self.up_layers):
            if i > 0:  # For all except the first up layer
                x = self.upscale(x)  # Upscale
                x += h.pop()  # Fetching stored output (skip connection)
            x = self.act(l(x))

        return x

In Depth: UNets and Alternatives | 139



12 For visualization purposes, we show MNIST as black numbers on a white background, but the training
dataset uses the opposite.

If you take a grayscale input image of shape (1, 28, 28), the path through the model
would be as follows:

1. The image goes through the downscaling block. The first layer, a 2D convolution1.
with 32 filters, will make it of shape [32, 28, 28].

2. The image is then downscaled with max pooling, making it of shape [32, 14,2.
14]. The MNIST dataset contains white numbers drawn on a black background
(where black is represented by the number zero). We choose max pooling to
select the largest values in a region and thus focus on the brightest pixels.12

3. The image goes through the second downscaling block. The second layer, a 2D3.
convolution with 64 filters, will make it of shape [64, 14, 14].

4. After another downscaling, the shape is [64, 7, 7].4.
5. There is a third layer in the downscaling block, but no downscaling this time5.

because we are already using very small 7 × 7 blocks. This will keep the shape of
[64, 7, 7].

6. We do the same process but in inverse, upscaling to [64, 14, 14], [32, 14, 14], and6.
finally [1, 28, 28].

A diffusion model trained with this architecture on MNIST produces the samples
shown in Figure 4-8 (code included in the supplementary material but omitted here
for brevity).

Figure 4-8. Loss and generations of a basic UNet

140 | Chapter 4: Diffusion Models

https://oreil.ly/handsonGenAIcode


Improving the UNet
This simple UNet works for this relatively easy task. How can we handle more-
complex data? Here are some options:

Add more parameters
This can be accomplished by using multiple convolutional layers in each block,
using a larger number of filters in each convolutional layer, or making the
network deeper.

Add normalization, such as batch normalization
Batch normalization can help the model learn more quickly and reliably by
ensuring that the outputs of each layer are centered around 0 and have a standard
deviation of 1.

Add regularization, such as dropout
Dropout helps prevent overfitting to the training data, which is essential when
working with smaller datasets.

Add attention
Introducing self-attention layers allows the model to focus on different parts of
the image at different times, which can help the UNet learn more-complex func‐
tions. Adding transformer-like attention layers also lets us increase the number
of learnable parameters. The downside is that attention layers are much more
expensive to compute than regular convolutional layers at higher resolutions, so
we typically use them only at lower resolutions (e.g., the lower-resolution blocks
in the UNet).

For comparison, Figure 4-9 shows the results on MNIST when using the UNet imple‐
mentation in the diffusers library, which features the aforementioned improvements.

Figure 4-9. Loss and generations from the diffusers UNet, with several improvements
over the basic architecture

In Depth: UNets and Alternatives | 141



Alternative Architectures
More recently, several alternative architectures have been proposed for diffusion
models (Figure 4-10).

Figure 4-10. Comparison of UNet with UViT and RIN

142 | Chapter 4: Diffusion Models



These architectures include the following:

Transformers
The Diffusion Transformers paper showed that a transformer-based architecture
can train a diffusion model with excellent results. However, the compute and
memory requirements of the transformer architecture remain a challenge for
very high resolutions.

UViT
The UViT architecture from the Simple Diffusion paper aims to get the best of
both worlds by replacing the middle layers of the UNet with a large stack of
transformer blocks. A key insight of this paper is that focusing most of the com‐
pute at the lower-resolution blocks of the UNet allows for more efficient training
of high-resolution diffusion models. For very high resolutions, they do some
additional preprocessing using something called a wavelet transform to reduce
the spatial resolution of the input image while keeping as much information as
possible through additional channels, again reducing the amount of compute
spent on the higher spatial resolutions.

Recurrent Interface Networks (RINs)
The RIN paper takes a similar approach, first mapping the high-resolution inputs
to a more manageable and lower-dimensional latent representation, which is
then processed by a stack of transformer blocks before being decoded back out
to an image. Additionally, the RIN paper introduces the idea of recurrence, where
information is passed to the model from the previous processing step. This can
benefit the iterative improvement that diffusion models are designed to perform.

Some high-quality diffusion transformer models include Flux, Stable Diffusion 3,
PixArt-Σ, and the text-to-video Sora. It remains to be seen whether transformer-
based approaches completely supplant UNets as the go-to architecture for diffusion
models or whether hybrid approaches like the UViT and RIN architectures will be the
most effective.

In Depth: Diffusion Objectives
We’ve discussed diffusion models taking a noisy input and learning to denoise it.
At first glance, you might assume that the network’s natural prediction target is
the image’s denoised version, which we’ll call x0. However, we compared the model
prediction in the code with the unit-variance noise used to create the noisy version
(often called the epsilon objective, eps). The two appear mathematically identical
since if we know the noise and the timestep, we can derive x0, and vice versa. While
this is true, the objective choice has some subtle effects on how large the loss is at
different timesteps and, thus, which noise levels the model learns best to denoise.
Predicting noise is easier for the model than directly predicting the target data. This

In Depth: Diffusion Objectives | 143

http://arxiv.org/abs/2212.09748
http://arxiv.org/abs/2212.11972


is because the noise follows a known distribution at each step, and predicting the
difference between two steps is often simpler than predicting the absolute values of
the target data.

To gain some intuition, let’s visualize some different objectives across different time‐
steps. The input image and the random noise in Figure 4-11 are the same (first
two rows in the illustration), but the noised images in the third row have different
amounts of added noise depending on the timestep.

Figure 4-11. Comparing eps versus x0 versus v objectives: eps tries to predict the noise
added at each timestep, x0 predicts the denoised image, and v uses a mixture of the two

At extremely low noise levels, the x0 objective is trivially easy (the noised image is
almost the same as the input), while predicting the noise accurately is almost impossi‐
ble. Likewise, at extremely high noise levels, the eps objective is straightforward (the
noised image is almost equal to the pure noise added), while predicting the denoised
image accurately is almost impossible. If we use the x0 objective, our training will put
less weight on lower noise levels.

Neither case is ideal, and so additional objectives have been introduced that have the
model predict a mix of x0 and eps at different timesteps. The velocity (v) objective,
shown in the last row of the illustration, is one such objective, which is defined
as v = α · ϵ + 1 − α · x0. The eps objective remains one of the most preferred

144 | Chapter 4: Diffusion Models



approaches, but it’s important to be aware of its disadvantages and the existence of
other objectives.

A group of researchers at NVIDIA worked to unify the different
formulations of diffusion models into a consistent framework with
a clear separation of design choices. This allowed them to identify
changes in the sampling and training processes, resulting in better
performance, leading to what is known as k-diffusion. If you’re
interested in learning more about the different objectives, scalings,
and nuances of the diffusion model formulations, we recommend
reading the EDM paper for a more in-depth discussion.

Project Time: Train Your Diffusion Model
OK, that’s enough theory. It’s now time for you to train your unconditional diffusion
model. As before, you’ll train a model to generate new images. The main challenge of
this project will be creating or finding a good dataset you can use for this.

In case you want to use an existing dataset, a good starting point is to filter for
image-classification datasets on the Hugging Face Hub and pick one of your liking.
One of the main questions you will want to answer is which part of the dataset you
want to use for training. Will you use the whole dataset, as before, so that the model
generates digits? Or will you use a specific class (e.g., cats, so that we get a cats
expert model)? Or will you use a subset of the dataset (e.g., only images with a certain
resolution)?

If you want to upload a new dataset instead, the first step will be to find and
access the data. To share a dataset, the most straightforward approach is to use the
ImageFolder feature of the datasets library. You can then upload the dataset to the
Hugging Face Hub and use it in your project.

Once you have the data, think about the preprocessing steps, the model definition,
and the training loop. You can use the code from the chapter as a starting point and
modify it to fit your dataset.

Summary
We started the chapter using high-level pipelines to run inference of diffusion mod‐
els. We ended up training our diffusion model from scratch and diving into each
component. Let’s do a brief recap.

The goal is to train a model, usually a UNet, that receives noisy images as input
and can predict the noise part of that image. When training our model, we add
noise in different magnitudes according to a random number of timesteps. One of
the challenges we saw was that to add noise at a high number of steps, 900, for

Summary | 145

http://arxiv.org/abs/2206.00364
https://oreil.ly/AF8QV
https://oreil.ly/RV4Bh


example, we would need to do a high number of noise iterations. To fix this, we use
the reparameterization trick, which allows us to obtain the noisy input at a specific
timestep directly. The model is trained to minimize the difference between the noise
predictions and the actual input noise. For inference, we do an iterative refinement
process in which the model refines the initial random input. Rather than keeping
the final prediction of a single diffusion step, we iteratively modify the input x by a
small amount in the direction of that prediction. This, of course, is one of the reasons
doing inference with diffusion models tends to be slow and becomes one of its main
disadvantages compared to models like GANs.

The diffusion world is fast-moving, so many advances exist (e.g., the scheduler, the
model, the training techniques, and so on). This chapter focused on foundations that
will allow us to jump to conditional generation (e.g., generating an image conditioned
on an input prompt) and provide a background for you to dive deeper into the
diffusion world. Some of the readings through this chapter can help you dive deeper.

For additional readings, we suggest reviewing the following:

• The “Annotated Diffusion Model” blog post, which does a technical write-up of•
the DDPM paper

• Lilian Weng’s write-up, which is excellent for a deeper dive into the math•
• The “Denoising Diffusion Probabilistic Models” paper itself•
• Karras’s work on unifying the formulations of diffusion models•
• “Simple Diffusion: End-to-End Diffusion for High Resolution Images”, which•

explains how to adjust the sample schedule for different sizes

Exercises
1. Explain the diffusion inference algorithm.1.
2. What’s the role of the noise scheduler?2.
3. When creating a training dataset of images, which characteristics are important3.

to watch?
4. Why do we randomly flip training images?4.
5. How can we evaluate the generations of diffusion models?5.
6. How do the values of beta_end impact the diffusion process?6.
7. Why do we use UNets rather than VAEs as the main model for diffusion?7.
8. What benefits and challenges are faced when incorporating techniques from8.

transformers (like attention layers or a transformer-based architecture) to diffu‐
sion?

146 | Chapter 4: Diffusion Models

https://oreil.ly/mFHxe
https://oreil.ly/ZEVF4
https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2301.11093


You can find the solutions to these exercises and the following challenges in the
book’s GitHub repository.

Challenges
1. Reparameterization trick. Show that1.

xt = 1 − βtxt − 1 + βtϵ

is equivalent to

xt = αtx0 + 1 − αtϵ

Note that this is not a trivial example and is not required to use diffusion
models. We recommend reviewing “A Beginner’s Guide to Diffusion Models:
Understanding the Basics and Beyond” for guidance. An important thing to
know is how to merge two Gaussians: if you have two Gaussians with different
variance, N μ1,σ1

2  and N μ2,σ2
2 , the resulting Gaussian is N μ1 + μ2,σ1

2 + σ2
2 .

2. DDIM scheduler. This chapter uses the DDPM scheduler, sometimes requiring2.
hundreds or thousands of steps to achieve high-quality results. Recent research
has explored achieving good generations with as few steps as possible, down to
even one or two. The diffusers library contains multiple schedulers such as the
DDIMScheduler from the “Denoising Diffusion Implicit Models” paper. Create
some images using the DDIMScheduler. This chapter’s sampling section required
1,000 steps with the DDPMScheduler. How many steps are required for you to
generate images with similar quality? Experiment switching the scheduler for
google/ddpm-celebahq-256 and compare both schedulers.

Challenges | 147

https://oreil.ly/handsonGenAIcode
https://oreil.ly/m3SET
https://oreil.ly/m3SET
https://arxiv.org/abs/2010.02502


References
Bansal, Arpit, et al. “Cold Diffusion: Inverting Arbitrary Image Transforms Without

Noise.” arXiv, August 19, 2022. http://arxiv.org/abs/2208.09392.
Chen, Ting. “On the Importance of Noise Scheduling for Diffusion Models.” arXiv,

May 21, 2023. http://arxiv.org/abs/2301.10972.
Ho, Jonathan, et al. “Denoising Diffusion Probabilistic Models.” arXiv, December 16,

2020. http://arxiv.org/abs/2006.11239.
Hoogeboom, Emiel, et al. “Simple Diffusion: End-to-End Diffusion for High Resolu‐

tion Images.” arXiv, December 12, 2023. http://arxiv.org/abs/2301.11093.
Jabri, Allan, et al. “Scalable Adaptive Computation for Iterative Generation.” arXiv,

June 13 2023. http://arxiv.org/abs/2212.11972.
Karras, Tero, et al. “Elucidating the Design Space of Diffusion-Based Generative

Models.” arXiv, October 11, 2022. http://arxiv.org/abs/2206.00364.
Lee, Tony, et al. “Holistic Evaluation of Text-to-Image Models.” arXiv, November 7,

2023. https://arxiv.org/abs/2311.04287.
Lin, Shanchuan, et al. “Common Diffusion Noise Schedules and Sample Steps Are

Flawed.” arXiv, January 23, 2024. https://arxiv.org/abs/2305.08891.
Peebles, William, and Saining Xie. “Scalable Diffusion Models with Transformers.”

arXiv, March 2, 2023. http://arxiv.org/abs/2212.09748.
Rogge, Niels, and Kashif Rasul. “The Annotated Diffusion Model.” Hugging Face

blog, June 7, 2022. https://oreil.ly/mFHxe.
Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image

Segmentation.” arXiv, May 18, 2015. http://arxiv.org/abs/1505.04597.
Song, Jiaming, et al. “Denoising Diffusion Implicit Models.” arXiv, October 5, 2022.

https://arxiv.org/abs/2010.02502.

148 | Chapter 4: Diffusion Models

http://arxiv.org/abs/2208.09392
http://arxiv.org/abs/2301.10972
http://arxiv.org/abs/2006.11239
http://arxiv.org/abs/2301.11093
http://arxiv.org/abs/2212.11972
http://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2311.04287
https://arxiv.org/abs/2305.08891
http://arxiv.org/abs/2212.09748
https://oreil.ly/mFHxe
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2010.02502


CHAPTER 5

Stable Diffusion and
Conditional Generation

In the previous chapter, we introduced diffusion models and the underlying idea of
iterative refinement. By the end of the chapter, we could generate images, but training
the model was time-consuming, and we had no control over the generated images.
In this chapter, we’ll see how to go from this to text-conditioned models that can
efficiently generate images based on text descriptions, with a model called Stable
Diffusion as a case study. Before we get to Stable Diffusionable Diffusion, though,
we’ll look at how conditional models work and review some of the innovations that
led to the text-to-image models we have today.

Adding Control: Conditional Diffusion Models
Before we tackle the challenge of generating images from text descriptions, let’s start
with something slightly easier. We’ll explore how we can steer our model outputs
toward specific types or classes of images. We can use a method called conditioning,
where the idea is to ask the model to generate not just any image but an image
belonging to a predefined class. In this context, conditioning refers to guiding the
model’s output by providing additional information, such as a label or prompt,
during the generation process.

Model conditioning is a simple but effective concept. We’ll start from the diffusion
model we used in Chapter 4 and introduce a few changes. First, rather than using
the butterflies dataset, we’ll switch to a dataset that has classes. We’ll use Fashion
MNIST, a dataset with thousands of images of clothes associated with labels from 10
classes. Then, crucially, we’ll provide the model with two inputs: (1) the images, just
as before, along with (2) the class label each image belongs to. By doing so, we expect

149



the model to learn the associations between images and labels, helping it understand
the distinctive features of sweaters, boots, and other clothing items.

Note that we are not interested in solving a classification problem—we don’t want the
model to tell us which class the image belongs to. We still want it to perform the same
task as in Chapter 4: please generate plausible images that look like they came from
this dataset. The only difference is that we are giving it additional information about
those images. We’ll use the same loss function and training strategy, as it’s the same
task as before.

Preparing the Data
We need a dataset with distinct groups of images. Datasets intended for Computer
Vision classification tasks are ideal for this purpose. We could start with something
like the ImageNet dataset, which contains millions of images across 1,000 classes.
However, training models on this dataset would take an extremely long time. When
approaching a new problem, starting with a smaller dataset is a good idea to ensure
everything works as expected. This keeps the feedback loop short so that we can
iterate quickly and ensure we’re on the right track.

We could choose MNIST for this example, as in Chapter 4. To make things just a
little bit different, we’ll choose Fashion MNIST instead. Fashion MNIST, developed
and made open source by Zalando, is a replacement for MNIST that shares similar
characteristics: a compact size, black-and-white images, and 10 classes. The main
difference is that classes correspond to different types of clothing instead of being
digits, and the images contain more detail than simple handwritten digits.

Just as in Chapter 3, we’ll need to configure matplotlib to use reversed gray colors to
match the Fashion MNIST dataset. Let’s check out some examples:

import matplotlib as mpl
from datasets import load_dataset

from genaibook.core import show_images

mpl.rcParams["image.cmap"] = "gray_r"

fashion_mnist = load_dataset("fashion_mnist")
clothes = fashion_mnist["train"]["image"][:8]
classes = fashion_mnist["train"]["label"][:8]
show_images(clothes, titles=classes, figsize=(4, 2.5))

150 | Chapter 5: Stable Diffusion and Conditional Generation

https://oreil.ly/9q640


1 A list of the 10 categories in Fashion MNIST can be found online.
2 In Chapter 4, we resized the butterfly images as they were very large (512 × 283). We resized them to be

smaller to speed up training. In this section, our images are small and don’t require resizing, but we pad them
to 32 × 32 to use powers of 2, which usually play better with the cascaded UNet layers.

So class 0 corresponds to a t-shirt, 2 is a sweater, and 9 is a boot.1 We prepare
our dataset and DataLoader similarly to how we did it in Chapter 4, with the main
difference that we’ll also include the class information as input. Instead of resizing
as we did in Chapter 4, we’ll pad our image inputs (28 × 28 pixels) to 32 × 32. This
will preserve the original image quality, which will help the UNet make higher-quality
predictions.2 Padding helps avoid issues where the operations might crop out or
distort edge information:

import torch
from torchvision import transforms

preprocess = transforms.Compose(
    [
        transforms.RandomHorizontalFlip(),  # Randomly flip (data augmentation)
        transforms.ToTensor(),  # Convert to tensor (0, 1)
        transforms.Pad(2),  # Add 2 pixels on all sides
        transforms.Normalize([0.5], [0.5]),  # Map to (-1, 1)
    ]
) 

def transform(examples): 
    images = [preprocess(image) for image in examples["image"]]
    return {"images": images, "labels": examples["label"]} 

train_dataset = fashion_mnist["train"].with_transform(transform) 

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=256, shuffle=True
) 

Adding Control: Conditional Diffusion Models | 151

https://oreil.ly/28Wrg


Define a series of transformations (flipping, converting to tensor, padding, and
normalizing) that will be applied to the images in the dataset.

Process a batch of images using the transformations.

Return a dictionary containing the processed images and their corresponding
labels.

Load the dataset’s train split. By using with_transform, you ensure that items are
returned after applying the transformation.

Create a DataLoader that will build the batches and shuffle the data, simplifying
our code.

Creating a Class-Conditioned Model
The UNet from the diffusers library allows for providing custom conditioning infor‐
mation. Here, we create a similar model to the one we used in Chapter 4, but we
add a num_class_embeds argument to the UNet constructor. This argument tells the
model we’d like to use class labels as additional conditioning. We’ll use 10 as that’s the
number of classes in Fashion MNIST:

from diffusers import UNet2DModel

model = UNet2DModel(
    in_channels=1,  # 1 channel for grayscale images
    out_channels=1,
    sample_size=32,
    block_out_channels=(32, 64, 128, 256),
    num_class_embeds=10,  # Enable class conditioning
)

To make predictions with this model, we must pass in the class labels as additional
inputs to the forward() method:

x = torch.randn((1, 1, 32, 32))
with torch.inference_mode():
    out = model(x, timestep=7, class_labels=torch.tensor([2])).sample
out.shape

torch.Size([1, 1, 32, 32])

152 | Chapter 5: Stable Diffusion and Conditional Generation



We also pass something else to the model as conditioning: the
timestep. That’s right, even the model from Chapter 4 can be
considered a conditional diffusion model. We condition it on the
timestep, expecting that knowing how far we are in the diffusion
process will help it generate more-realistic images.

Internally, the timestep and the class label are turned into embeddings that the
model uses during its forward pass. At multiple stages throughout the UNet, these
embeddings are projected onto a dimension that matches the number of channels in
a given layer. The embeddings are then added to the outputs of that layer. This means
the conditioning information is fed to every block of the UNet, giving the model
ample opportunity to learn how to use it effectively.

Embeddings are effective in diffusion models because they provide a compact and
dense representation of conditioning information, such as timesteps and class labels,
which the model can easily integrate throughout the UNet architecture. The flexibil‐
ity of embeddings also allows for effective handling of different types of conditioning
inputs, whether they are continuous (like timesteps), categorical (like class labels), or
even text based (like prompts).

Training the Model
Adding noise works just as well on grayscale images as on the butterflies from
Chapter 4. Let’s look at the impact of noise as we do more noising timesteps:

from diffusers import DDPMScheduler

scheduler = DDPMScheduler(
    num_train_timesteps=1000, beta_start=0.001, beta_end=0.02
)
timesteps = torch.linspace(0, 999, 8).long()
batch = next(iter(train_dataloader))

# We load 8 images from the dataset and
# add increasing amounts of noise to them
x = batch["images"][0].expand([8, 1, 32, 32])
noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

Adding Control: Conditional Diffusion Models | 153



3 Different number of epochs and learning rate, a different epsilon for AdamW, usage of tqdm for data loading,
loading labels, and passing the labels to the model. The most important part, the conditioning, is a two-line
diff.

Our training loop will be almost the same as in Chapter 4, except that we now pass
the class labels for conditioning. Note that this is just additional information for the
model, but it doesn’t affect how we define our loss function in any way. We’ll also use
tqdm to display progress bars during training.

This is a great moment to kick off the training and get a tea, coffee, or drink of your
choice. Do not be intimidated by the following code: it’s similar to what we’ve done
with unconditional generation. We strongly suggest looking at this code side by side
with the code in the previous chapter. Can you find all differences?3

The script does the following:

1. Loads a batch of images and their corresponding labels (using train_dataloader1.
and tqdm to iterate through it)

2. Adds noise to the images based on their timestep (using scheduler2.
.add_noise())

3. Feeds the noisy images into the model, alongside the class labels for conditioning3.
(using model())

4. Calculates the loss4.
5. Backpropagates the loss and updates the model weights with the optimizer5.

154 | Chapter 5: Stable Diffusion and Conditional Generation



from torch.nn import functional as F
from tqdm import tqdm

from genaibook.core import get_device

# Initialize the scheduler
scheduler = DDPMScheduler(
    num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02
)

num_epochs = 25
lr = 3e-4
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, eps=1e-5)
losses = []  # To store loss values for plotting

device = get_device()
model = model.to(device)

# Train the model (this takes a while!)
for epoch in (progress := tqdm(range(num_epochs))):
    for step, batch in (
        inner := tqdm(
            enumerate(train_dataloader),
            position=0,
            leave=True,
            total=len(train_dataloader),
        )
    ):
        # Load the input images and classes
        clean_images = batch["images"].to(device)
        class_labels = batch["labels"].to(device)

        # Sample noise to add to the images
        noise = torch.randn(clean_images.shape).to(device)

        # Sample a random timestep for each image
        timesteps = torch.randint(
            0,
            scheduler.config.num_train_timesteps,
            (clean_images.shape[0],),
            device=device,
        ).long()

        # Add noise to the clean images according
        # to the noise magnitude at each timestep
        noisy_images = scheduler.add_noise(clean_images, noise, timesteps)

        # Get the model prediction for the noise
        # Note the use of class_labels
        noise_pred = model(
            noisy_images,
            timesteps,

Adding Control: Conditional Diffusion Models | 155



            class_labels=class_labels,
            return_dict=False,
        )[0]

        # Compare the prediction with the actual noise
        loss = F.mse_loss(noise_pred, noise)

        # Update loss display
        inner.set_postfix(loss=f"{loss.cpu().item():.3f}")

        # Store the loss for later plotting
        losses.append(loss.item())

        # Backward pass and optimization
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

Once the training is complete, we can plot the training loss to see how the model
performed:

import matplotlib.pyplot as plt

plt.plot(losses)

156 | Chapter 5: Stable Diffusion and Conditional Generation



Sampling
We now have a model that expects two inputs when making predictions: the image
and the class label. We can create samples by beginning with random noise and then
iteratively denoising, passing in whatever class label we’d like to generate:

def generate_from_class(class_to_generate, n_samples=8):
    sample = torch.randn(n_samples, 1, 32, 32).to(device)
    class_labels = [class_to_generate] * n_samples
    class_labels = torch.tensor(class_labels).to(device)

    for _, t in tqdm(enumerate(scheduler.timesteps)):
        # Get model prediction
        with torch.inference_mode():
            noise_pred = model(sample, t, class_labels=class_labels).sample

        # Update sample with step
        sample = scheduler.step(noise_pred, t, sample).prev_sample

    return sample.clip(-1, 1) * 0.5 + 0.5

We can generate some t-shirts (class 0):

images = generate_from_class(0)
show_images(images, nrows=2)

Now, we can generate some sneakers (class 7):

images = generate_from_class(7)
show_images(images, nrows=2)

Adding Control: Conditional Diffusion Models | 157



Or, finally, we can generate some boots (class 9):

images = generate_from_class(9)
show_images(images, nrows=2)

As you can see, the generated images still contain some noise. They could get better
if we explored the model architecture, did hyperparameter tuning, and trained for
longer. In any case, it’s amazing that the model learned the shapes of different types
of clothing and realized that shape 9 looks different than shape 0 just by sending
this information alongside the training data. To put it slightly differently, the model
is used to seeing the number 9 accompanying boots. When we ask it to generate an
image and provide the 9, it responds with a boot.

158 | Chapter 5: Stable Diffusion and Conditional Generation



Improving Efficiency: Latent Diffusion
Now that we can train a conditional model, we just need to scale it up and condition
it on text instead of class labels…right? Right? Well, not quite. As image size grows, so
does the computational power required to work with those images. This is especially
pronounced in self-attention, where the amount of operations grows quadratically
with the number of inputs. A 128 × 128 image has four times as many pixels as a 64
× 64 image, requiring 16 times the memory and computing in a self-attention layer.
This is a problem for anyone who’d like to generate high-resolution images.

Latent Diffusion tries to mitigate this issue by using a separate Variational Auto-
Encoder (Figure 5-1). As we saw in Chapter 2, VAEs can compress images to a
smaller spatial dimension. The rationale is that images tend to contain a large amount
of redundant information. Given enough training data, a VAE can learn to produce a
much smaller representation of an input image and then reconstruct the image with
high fidelity based on this small latent representation. The VAE used in Stable Diffu‐
sion takes in three-channel images and produces a four-channel latent representation
with a reduction factor of 8 for each spatial dimension. A 512 × 512 input image (3 ×
512 × 512 = 786,432 values) will be compressed down to a 4 × 64 × 64 latent (16,384
values).

Figure 5-1. The Latent Diffusion process. Note the VAE encoder and decoder on the left
for translating between pixel and latent space.

Improving Efficiency: Latent Diffusion | 159



4 LAION and EleutherAI are nonprofit organizations focused on open ML. StabilityAI is one of the companies
that has pushed the most for open access ML. RunwayML is a company building AI-powered tools for
creative applications.

By applying the diffusion process on these smaller latent representations rather than
on full-resolution images, we can get many of the benefits that would come from
using smaller images (lower memory usage, fewer layers needed in the UNet, faster
generation times, etc.) and still decode the result back to a high-resolution image
once we’re ready to view it. This innovation dramatically lowers the cost to train and
run these models. The paper that introduced this idea, “Latent Diffusion Models”,
demonstrated the power of this technique by training models conditioned on seg‐
mentation maps, class labels, and text. The impressive results led to further collabora‐
tion between the authors and partners such as LAION, StabilityAI, RunwayML, and
EleutherAI to train a more powerful model version, which became Stable Diffusion.4

Stable Diffusion: Components in Depth
Stable Diffusion is a Latent Diffusion model that can generate images conditioned on
text prompts. It can also be used to do many other things, such as modifying images,
which you’ll learn more about in Chapter 9.

Thanks to its popularity, hundreds of websites and apps let you use it to create images
with no technical knowledge required. It’s also very well supported by libraries like
diffusers, which let us sample an image with Stable Diffusion by using a user-friendly
pipeline as we did in Chapter 1:

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)

pipe("Watercolor illustration of a rose").images[0]

160 | Chapter 5: Stable Diffusion and Conditional Generation

http://arxiv.org/abs/2112.10752


This section will explore all the components that make this possible.

Just as diffusers has StableDiffusionPipeline, it also provides
access to dozens of other models from different families (Würst‐
chen, AuraFlow, Flux, etc.). Additionally, it offers similar pipelines
for other tasks, such as inpainting (StableDiffusionInpaint)
and super-resolution (StableDiffusionLatentUpscale). Chapter 8
further explores some of these models and pipelines. We’ll first
focus on understanding the whole Stable Diffusion pipeline.

The Text Encoder
So, how does Stable Diffusion understand text? Earlier on, we explained how feeding
additional information to the UNet allows us to have some control over the types
of images generated. Given a noisy version of an image, the model is tasked with
predicting the denoised version based on additional clues such as a class label. In
the case of Stable Diffusion, the additional clue is the text prompt. At inference time,
we feed in the description of an image we’d like to generate and some pure noise
as a starting point, and the model does its best to denoise the random input into
something that matches the caption.

Stable Diffusion: Components in Depth | 161



For this to work, we need to create a numeric representation of the text that captures
relevant information about what it describes. To accomplish this, we’ll use a text
encoder that turns an input string into text embeddings, which are then fed into the
UNet along with the timestep and the noisy latents, as shown in Figure 5-2.

Figure 5-2. The UNet can be conditioned on multiple inputs, such as the timestep, the
class label, or the text embeddings

To do this, Stable Diffusion leverages a pretrained transformer model based on
CLIP, introduced in Chapter 3. The text encoder is a transformer model that takes
in a sequence of tokens and produces a vector for each token, as can be seen in
Figure 5-3. In the case of the first versions of Stable Diffusion (Stable Diffusion 1 to
1.5), where they used the original CLIP from OpenAI, the text encoder maps to a
768-dimensional vector. As the original dataset of CLIP is unknown, the community
trained an open source version called OpenCLIP. Stable Diffusion 2 uses the text
encoder from OpenCLIP, which generates 1,024-dimensional vectors for each token.

Instead of combining the vectors of all tokens into a single representation, we keep
them separate and use them as conditioning for the UNet. This allows the UNet to
use the information in each token separately rather than just the overall meaning
of the prompt. Because we’re extracting these text embeddings from the internal
representation of the CLIP model, they are often called the encoder hidden states. Let’s
dive deeper into how the text encoder works under the hood. This is the same process
as that for the encoder models we discussed in Chapter 2.

162 | Chapter 5: Stable Diffusion and Conditional Generation



Figure 5-3. The text-encoding process transforms the input prompt into a set of text
embeddings (the encoder hidden states), which can then be fed in as conditioning to the
UNet

Stable Diffusion: Components in Depth | 163



The first step to encode text is to perform tokenization, which converts a sequence of
characters into a sequence of numbers, as you learned in Chapter 2. In the following
example, we see how the tokenization of a phrase works with Stable Diffusion’s
tokenizer. Each token in the prompt is assigned a unique token number (for example,
“photograph” happens to be 8853 in the tokenizer’s vocabulary). There are also
special tokens that provide additional context, such as where the sentence ends:

prompt = "A photograph of a puppy"

# Turn the text into a sequence of tokens:
text_input = pipe.tokenizer(
    prompt,
    return_tensors="pt",
)

# Output each token and its corresponding ID
for t in text_input["input_ids"][0]:
    print(t, pipe.tokenizer.decoder.get(int(t)))

tensor(49406) <|startoftext|>
tensor(320) a</w>
tensor(8853) photograph</w>
tensor(539) of</w>
tensor(320) a</w>
tensor(6829) puppy</w>
tensor(49407) <|endoftext|>

Once the text is tokenized, we can pass it through the text encoder to get the final text
embeddings that will be fed into the UNet:

text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
print("Text embeddings shape:", text_embeddings.shape)

Text embeddings shape: torch.Size([1, 77, 768])

The Variational AutoEncoder
The VAE is tasked with compressing images into a smaller latent representation and
reconstructing them again. The VAE, shown in Figure 5-4, is a crucial component
of the Stable Diffusion model and is truly impressive. We won’t go into the training
details here, but in addition to the usual reconstruction loss and KL divergence
described in Chapter 3, the VAE uses an additional patch-based discriminator loss to
help the model generate plausible details and textures. This helps avoid the slightly
blurry outputs typical in previous VAEs. Like the text encoder, the VAE is usually
trained separately and used as a frozen component during the diffusion model train‐
ing and sampling process.

164 | Chapter 5: Stable Diffusion and Conditional Generation



Figure 5-4. The VAE architecture

Let’s load an image and see what it looks like after being compressed and decom‐
pressed by the VAE. First, let’s check out the original image:

from genaibook.core import load_image, show_image, SampleURL

im = load_image(
    SampleURL.LlamaExample,
    size=(512, 512),
)
show_image(im);

Now, let’s pass the image through the VAE:

with torch.inference_mode():
    # Process image
    tensor_im = transforms.ToTensor()(im).unsqueeze(0).to(device) * 2 - 1 
    tensor_im = tensor_im.half() 

    # Encode the image
    latent = pipe.vae.encode(tensor_im) 

    # Sample from the latent distribution
    latents = latent.latent_dist.sample() 
    latents = latents * 0.18215 

Stable Diffusion: Components in Depth | 165



latents.shape

torch.Size([1, 4, 64, 64])

The image is transformed to match the VAE’s input expectations. We make it
a tensor and add a dimension with unsqueeze(0) to make it a batch of size 1.
Finally, we normalize the image to the range [–1, 1] to match the VAE’s input
range.

The image is converted from float32 to float16, because we loaded the pipeline
with torch.float16 precision.

The image is passed through the VAE’s encoder. As discussed in Chapter 3, VAEs
output a distribution from which we can sample.

We can access the distribution object produced by the VAE encoder to generate a
sample from it.

Scale the latent vector by a fixed size of 0.18215. The Stable Diffusion authors
introduced this scaling factor of 0.18215 to ensure that the latent space has a
variance close to 1, matching the approximate scale of the noise added during the
diffusion process. It can be accessed in vae.config.scaling_factor.

The original image is a three-channel image of size 512 × 512 (786,432 values). The
VAE compresses this image into a four-channel latent representation of size 64 × 64
(16,384 values). We can plot each of the channels in the latent representation:

show_images(
    [l for l in latents[0]],
    titles=[f"Channel {i}" for i in range(latents.shape[1])],
    ncols=4,
)

166 | Chapter 5: Stable Diffusion and Conditional Generation



Now that we’ve encoded the image into a latent representation, we can decode it back
into an image. In an ideal world, the decoded image would be identical to the original
image. In practice, the VAE can potentially introduce some noise and artifacts. Let’s
see how the decoded image looks:

with torch.inference_mode():
    image = pipe.vae.decode(latents / 0.18215).sample
image = (image / 2 + 0.5).clamp(0, 1)
show_image(image[0].float())

When generating images from scratch, we create a random set of latents as the
starting point. We iteratively refine these noisy latents to generate a sample, and then
the VAE decoder is used to decode these final latents into an image we can view. The
encoder is used only if we’d like to start the process from an existing image, which is
something we’ll explore in Chapter 8.

The UNet
The UNet used in Stable Diffusion is similar to the one in Chapter 4 for generat‐
ing images. Instead of taking in a three-channel image as the input, we take in
a four-channel latent. The timestep embedding is fed the same way as the class
conditioning in the example at the start of this chapter. But this UNet also needs
to accept the text embeddings as additional conditioning. Scattered throughout the
UNet are cross-attention layers. Each spatial location in the UNet can attend to
different tokens in the text conditioning, bringing in relevant information from the
prompt. Figure 5-5 shows how this text conditioning (as well as the timestep-based
conditioning) is fed in at different points.

Stable Diffusion: Components in Depth | 167



Figure 5-5. Conditioned UNet architecture

168 | Chapter 5: Stable Diffusion and Conditional Generation



At the left in Figure 5-5, you can find the model inputs: the noisy x, which would
be the four-channel latent in this case. The timestep and prompt are also fed to the
model (in the form of embeddings) at different points of the architecture. As with
all previous UNets, the model has a series of layers that downsample the input and
then upsample it back to the original size. The network also has skip connections that
allow the model to access information from earlier blocks.

The UNet for Stable Diffusion versions 1 and 2 has around 860 million parameters.
The UNet in the more recent Stable Diffusion XL (SDXL) has even more, at about 2.6
billion, and it uses additional conditioning information.

Stable Diffusion XL
During the summer of 2023, a new and better version of Stable Diffusion was
released: Stable Diffusion XL. It uses the same principles described in this chapter,
with various improvements across all system components. Some of the most exciting
changes are as follows:

A larger text encoder to capture better prompt representations
It uses the output from two text encoders and concatenates the embeddings.

Condition on everything
In addition to the timestep (which carries information about the amount of
noise) and the text embeddings, SDXL uses the following additional conditioning
signals:

Original image size
Instead of discarding small images in the training set (they account for
almost 40% of the total training data used to train SDXL), small images are
upscaled and used during training. However, the model also receives infor‐
mation about the image sizes it’s receiving. This way, it learns that upscaling
artifacts are not supposed to be part of large images and is encouraged to
produce better quality during inference.

Cropping coordinates
Input images are usually randomly cropped during training because all the
images in a batch must have the same size. Random crops may produce
undesired effects, such as cutting subject heads or completely removing
subjects from the image, even though they may be described in the text
prompt. After the model is trained, if we request an uncropped image (by
setting the crop coordinates to (0, 0)), the model is more likely to produce
subjects centered in the frame.

Stable Diffusion: Components in Depth | 169

http://arxiv.org/abs/2307.01952


Target aspect ratio
After initial pretraining on square images, SDXL was fine-tuned on various
aspect ratios, and the information about the original aspect ratio was used as
another conditioning signal. As in the other conditioning cases, this enables
the generation of much more realistic landscape and portrait images with
fewer artifacts than before.

Larger resolution
SDXL is designed to produce images with a resolution of 1,024 × 1,024 pixels (or
nonsquare images with a total number of pixels of approximately 1, 0242). Like
the aspect ratio, this feature was achieved during a fine-tuning phase.

The UNet is about three times as large
The cross-attention context is larger to account for the increase in the amount of
conditioning.

Improved VAE
It uses the same architecture as the original Stable Diffusion, but it’s trained on
a larger batch size and uses the exponential moving average (EMA) technique to
update the weights.

Refiner model
In addition to the base model, SDXL includes an additional refiner model that
works on the same latent space as the base model. However, this model was
trained on high-quality images only during the first 20% of the noise schedule.
This means that it knows how to take an image with a small amount of noise and
create high-quality textures and details.

Other researchers and the open source community had already explored many of
these techniques, thanks to the original Stable Diffusion being open source. SDXL
combines many of these ideas to achieve an impressive improvement in image quality
(see Figure 5-6), with the cost of running the model being slower and using more
memory.

170 | Chapter 5: Stable Diffusion and Conditional Generation



5 For more information, check out “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”
by Patrick Esser et al.

Figure 5-6. Image generated with SDXL

FLUX, SD3, and Video
The development in the diffusion models space doesn’t show a sign of slowdown.
In June 2024, Stability AI released Stable Diffusion 3, and in August 2024, Black
Forest Labs released the Flux family of models. The principles behind these models
are the same as those you learned in this chapter. However, they contain a different
type of scheduler (rectified flow matching schedulers) and a different architecture: a
diffusion transformer instead of the UNet.5

Both model families are available in various sizes and support different resolutions,
and they have improved prompt understanding and text-rendering capabilities. The
same architecture is also scalable to support video generation. CogVideoX is a family
of models that apply those ideas to the video-generation space. These models demon‐
strate that the principles we covered (conditioning, in particular) are great general
tools to guide the behavior of generative models and that open source releases can
make exploration faster.

Stable Diffusion: Components in Depth | 171

https://arxiv.org/abs/2403.03206
https://oreil.ly/BtzKD
https://oreil.ly/C73d8
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2408.06072


Classifier-Free Guidance
Despite all the efforts to make the text conditioning as helpful as possible, the model
still tends to default to relying primarily on the noisy input image rather than the
prompt when making its predictions. In a way, this makes sense: many captions
are only loosely related to their associated images, so the model learns not to rely
too heavily on the descriptions. However, this is undesirable when generating new
images: if the model doesn’t follow the prompt, we may get images that don’t relate to
our description.

To mitigate this, we introduce guidance. Guidance is any method that provides more
control over the sampling process. One option we could apply is to modify the
loss function to favor a specific direction. For example, if we wanted to bias the
generations toward a particular color, we could change the loss function to measure
how far we are, on average, from the target color. Another alternative is to use
models, such as CLIP or a classifier, to evaluate the result and include their loss signal
as part of the generation process. For example, using CLIP, we could compare the
difference between the prompt text and the generated image embeddings and guide
the diffusion process to minimize this difference. “Exercises” on page 181 shows how
to use this technique.

Another alternative is to use a trick called classifier-free guidance (CFG), which
combines the generations of conditional and unconditional diffusion models. During
training, text conditioning is sometimes kept blank, forcing the model to learn to
denoise images with no text information whatsoever (unconditional generation).
Then, we make two predictions at inference time: one with the text prompt as
conditioning and one without. We can then use the difference between these two
predictions to create a final combined prediction that pushes even further in the
direction indicated by the text-conditioned prediction according to a scaling factor
(the guidance scale), hopefully resulting in an image that better matches the prompt.

To incorporate the guidance, we can modify the noise prediction by doing something
like noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text
- noise_pred_uncond). This small change works surprisingly well and allows us
to have much better control of the generations. We’ll dive into the implementation
details later in the chapter, but let’s take a look at how to use it. Check out the results
of the prompt “An oil painting of a collie in a top hat” with CFG scale 1, 2, 4, and 12
(left to right in the output image):

images = []
prompt = "An oil painting of a collie in a top hat"
for guidance_scale in [1, 2, 4, 12]:
    torch.manual_seed(0)
    image = pipe(prompt, guidance_scale=guidance_scale).images[0]
    images.append(image)

172 | Chapter 5: Stable Diffusion and Conditional Generation



from genaibook.core import image_grid

image_grid(images, 1, 4)

As you can see, higher values result in images that better match the description, but
going too high may start to oversaturate the image. Google’s Imagen paper found
that this was because the in-progress predictions were exceeding the [-1, 1] bounds
the model was trained with. Because the diffusion model runs iteratively, it has to
deal with inputs whose values had not been seen during training, which can result
in excessive saturation, posterization, and even generation failures. They proposed
a method called dynamic thresholding to contain values within range and greatly
improve quality at high CFG scales.

Putting It All Together: Annotated Sampling Loop
Now that you know what each component does, let’s combine them to generate an
image without relying on the pipeline. Here are the settings we’ll use:

# Some settings
prompt = [
    "Acrylic palette knife painting of a flower"
]  # What we want to generate
height = 512  # default height of Stable Diffusion
width = 512  # default width of Stable Diffusion
num_inference_steps = 30  # Number of denoising steps
guidance_scale = 7.5  # Scale for classifier-free guidance
seed = 42  # Seed for random number generator

The first step is to encode the text prompt “Acrylic palette knife painting of a flower”.
Because we plan to do CFG, we’ll create two sets of text embeddings: one with the
prompt embedding and one representing an empty string, which is the unconditional
input. Although we’ll go with unconditional input here, this setup provides lots of
flexibility. For example, we can do the following:

Encode a negative prompt instead of the empty string
Adding a negative prompt allows us to guide the model in avoiding going in a
certain direction. In Exercise 6 of this chapter, you’ll play with negative prompts.

Putting It All Together: Annotated Sampling Loop | 173

https://arxiv.org/abs/2205.11487


Combine multiple prompts with different weights
Prompt weighting allows us to emphasize or deemphasize certain parts of a
prompt. You’ll learn more about prompt weighting in Chapter 8.

Let’s implement creation of the text embeddings:

# Tokenize the input
text_input = pipe.tokenizer(
    prompt,
    padding="max_length",  # Pad to max length to ensure inputs have same shape
    return_tensors="pt",
)

# Do the same for the unconditional input (a blank string)
uncond_input = pipe.tokenizer(
    "",
    padding="max_length",
    return_tensors="pt",
)

# Feed both embeddings through the text encoder
with torch.inference_mode():
    text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
    uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]

# Concatenate the two sets of text embeddings embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

Next, we create our random initial latents and set up the scheduler to use the desired
number of inference steps:

# Prepare the scheduler
pipe.scheduler.set_timesteps(num_inference_steps)

# Prepare the random starting latents
latents = (
    torch.randn(
        (1, pipe.unet.config.in_channels, height // 8, width // 8),
    )
    .to(device)
    .half()
)
latents = latents * pipe.scheduler.init_noise_sigma

Now we loop through the sampling steps, getting the model prediction at each stage
and using this to update the latents:

for t in pipe.scheduler.timesteps:
    # Create two copies of the latents to match the two
    # text embeddings (unconditional and conditional)
    latent_input = torch.cat([latents] * 2)
    latent_input = pipe.scheduler.scale_model_input(latent_input, t)

174 | Chapter 5: Stable Diffusion and Conditional Generation



    # Predict noise residuals for both unconditional and conditional latents
    with torch.inference_mode():
        noise_pred = pipe.unet(
            latent_input, t, encoder_hidden_states=text_embeddings
        ).sample

    # Split the prediction into unconditional and conditional versions
    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

    # Perform classifier-free guidance
    noise_pred = noise_pred_uncond + guidance_scale * (
        noise_pred_text - noise_pred_uncond
    )

    # Update latents for the next timestep
    latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

Notice the CFG step. Our final noise prediction is noise_pred_uncond + guid

ance_scale * (noise_pred_text - noise_pred_uncond), pushing the prediction
away from the unconditional prediction and toward the prediction based on the
prompt. Try changing the guidance scale to explore how this affects the output.

By the end of the loop, the latents should represent a plausible image that matches the
prompt. The final step is to decode the latents into an image by using the VAE so that
we can see the result:

# Scale and decode the image latents with the VAE
latents = 1 / pipe.vae.config.scaling_factor * latents
with torch.inference_mode():
    image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)

show_image(image[0].float());

Putting It All Together: Annotated Sampling Loop | 175



6 At the time, the Computer Vision Group at Heidelberg University. Currently, it is a research group at LMU
Munich.

If you explore the source code for the StableDiffusionPipeline, you’ll notice that
the preceding code closely matches the call() method used by the pipeline. Hope‐
fully, this annotated version shows that nothing too magical is happening behind the
scenes. Use this as a reference when we encounter additional pipelines that add tricks
to this foundation.

Open Data, Open Models
The LAION-5B dataset comprised over 5 billion image URLs and their respective
associated captions (image-caption pairs). The dataset was created by first taking
all image URLs found in CommonCrawl (an open repository of web-crawled data,
similar to how Google indexes the internet for its search) and then using CLIP to
keep only the image-caption pairs with high similarity between text and image.

This dataset was created by and for the open ML community, which saw the need for
an open-access dataset of this kind. Before the LAION initiative, only a handful of
research labs at large companies had access to image-text pair datasets. These organ‐
izations kept their datasets’ details to themselves, making their results impossible
to validate or replicate. By creating a publicly available source of URL and caption
indexes, LAION enabled a wave of smaller communities and organizations to train
models and perform research that would otherwise have been impossible.

The first Latent Diffusion model was one such model, trained on a previous version
of the LAION dataset with 400 million image-text pairs by CompVis.6 The release
of the LAION-trained Latent Diffusion model marked the first time a robust text-to-
image model was available for the entire research community.

The success of Latent Diffusion showed the potential of this approach, which was
realized by the follow-up work, Stable Diffusion. Training a model like Stable Diffu‐
sion required a significant amount of GPU time. Even leveraging the freely available
LAION dataset, only a few could afford the GPU-hours investment. This is why
the public release of the model weights and code was such a big deal: it marked
the first time a powerful text-to-image model with similar capabilities to the best
closed-source alternatives was available to all.

Stable Diffusion’s public availability has made it the go-to choice for researchers
and developers exploring this technology over the past years. Hundreds of papers
build upon the base model, adding new capabilities or finding innovative ways to
improve its speed and quality. Apart from research papers, a diverse community not
necessarily from an ML background has been hacking with the models to enable new
creative workflows, optimize for faster inference, and so much more (see Figure 5-7).

176 | Chapter 5: Stable Diffusion and Conditional Generation

https://oreil.ly/-N_g8
https://oreil.ly/-N_g8
https://oreil.ly/F3ReL
https://oreil.ly/zPMOu


Innumerable startups have found ways to integrate these rapidly improving tools into
their products, spawning an entire ecosystem of new applications.

Figure 5-7. Creativity has been exploding in the text-to-image space

The months after the introduction of Stable Diffusion demonstrated the impact of
openly sharing these technologies, with many further quality improvements and
customization techniques that we will explore in Chapters 7 and 8. Stable Diffusion
was competitive in quality with the commercial alternatives of the time, such as
DALL·E and Midjourney, and thousands of people have spent their time improving it
and building upon that open foundation. We hope this example encourages others to
follow suit and share their work with the open source community in the future.

Apart from being used to train Stable Diffusion, LAION-5B has
been used by many other research efforts. One example is Open‐
CLIP, an effort from the LAION community to train high-quality
(SOTA) open source CLIP models and replicate similar quality to
the original one. A high-quality open source CLIP model benefits
many tasks, such as image retrieval and zero-shot image classifica‐
tion. Having transparency in the data used to train the model also
enables researching the impact of scaling up the models, correctly
reproducing results, and making research more accessible.

Challenges and the Sunset of LAION-5B
However, the huge success of text-to-image generative models and downstream com‐
mercial applications based on such models have raised concerns about the data
source and content in those datasets.

Because the dataset comprises links to images crawled from the internet, it contains
millions of URLs pointing to images that may contain copyrighted material, such as

Open Data, Open Models | 177



photographs, works of art, comics, and illustrations. Research has found that such
a dataset also includes private sensitive information, such as personally identifiable
medical imagery, that was publicly available online.

Using such a dataset to train generative AI models can also inject the model with
the capability of producing content that reinforces or exacerbates societal biases, and
they can be used to produce explicit adult content. Additionally, these models can
frequently produce content that is very close to the training data, which can lead to
the generation of content extremely similar to copyrighted material. However, those
open models are trained on open datasets, so such biases and problematic content
can be studied, analyzed, and mitigated.

More recent research shows that the LAION-2B dataset, having been scraped from
the internet, failed to filter out explicitly illegal material regarding violence and child
safety, which led to the dataset deactivation.

Alternatives
With the deactivation of LAION datasets on the grounds of child safety, open alter‐
natives such as COYO-700M and DataComp-1B fill the void as open datasets that
follow a similar formula of internet-level scraping of images. Although they don’t
contain content that would lead to their immediate deactivation, they still contain
the same challenges of biases, copyrighted material, and personal rights that were
brought up in the previous section. CommonCanvas is a smaller scale (70 million
image-text pairs) dataset but contains exclusively openly Creative Commons licensed
images.

Fair and Commercial Use
While some countries have fair-use exceptions regarding copyright law for research
usage, and others have precedents that seem favorable regarding using scraped data
to train ML models, what happens when a research model trained on such materials
is used commercially and at scale for generative AI? This complex subject is currently
being litigated in courts in multiple jurisdictions in the United States and Europe,
with angles that relate to copyright law, fair use for research applications, privacy, the
economic impact of AI tools on creative jobs, and others. We don’t claim to have an
answer for such complex matters, but such a legal gray area is moving the research
and open source community away from using open datasets; for Stable Diffusion XL,
the dataset used to train it was not disclosed, despite the open source model weights.

The construction of a new large-scale text-image dataset that puts consent, safety,
and licensing at the center stage would also be an excellent resource for the research
and open source communities and legal certainty for commercial downstream appli‐
cations. The CommonCanvas datasets show a path in this direction.

178 | Chapter 5: Stable Diffusion and Conditional Generation

https://oreil.ly/tpSih
http://arxiv.org/abs/2303.11408
http://arxiv.org/abs/2211.05105
https://oreil.ly/OdyqI
https://oreil.ly/pVG1d
https://oreil.ly/nyYLs
https://oreil.ly/Qzq0k


Project Time: Build an Interactive ML Demo with Gradio
Until now, we’ve focused on running transformer and diffusion models using open
source libraries. This gives us lots of flexibility and control over the models but also
requires much work to set up and run. The reality is that most people don’t know
how to code but might be interested in exploring models and their capabilities.

In this project, we’ll build a simple ML demo that allows users to generate images
from text prompts by using Stable Diffusion. Demos allow you to easily showcase a
model to a broad audience and make your work and research more accessible.

There are many ways to build ML demos. You could use HTML, JavaScript, and CSS.
However, this requires some web development experience and is not a straightfor‐
ward process. Alternatively, open source libraries such as streamlit and gradio make
it easy to build interactive ML demos using Python. We’ll use gradio in this chapter,
which is a very simple and minimal library.

The gradio library can be run anywhere—in a Python IDE, Jupyter notebook, Google
Colab, or a cloud environment such as Hugging Face Spaces. The easiest way to build
gradio demos is using its Interface class, which has three key aspects:

inputs

The expected input types of the demo, such as text prompts or images

outputs

The expected output types of the demo, such as generated images

fn

The function that will be called when the user interacts with the demo. This is
where the magic happens. You can run any code here, including running models
with transformers or diffusers.

Let’s look at an example:

import gradio as gr

def greet(name):
    return "Hello " + name

demo = gr.Interface(fn=greet, inputs="text", outputs="text")

demo.launch()

Project Time: Build an Interactive ML Demo with Gradio | 179

https://streamlit.io/
https://oreil.ly/bBo5a


Now it’s your turn! Build a simple demo that allows users to generate images from
text prompts by using Stable Diffusion. You can use the code from the previous
section as a starting point. Once you get a demo running, we suggest adding more
features to make it interactive and fun. For example, you could do the following:

• Add a slider to control the guidance scale.•
• Add an additional text field to add a negative prompt.•
• Add a title and a description so that users understand what the demo is about.•

If you need help, remember to look at the official documentation and the quick start
guide.

Summary
This chapter showed how conditioning gives us new ways to control the images gener‐
ated by diffusion models. We’ve seen how a text encoder can condition a diffusion
model on a text prompt, enabling powerful text-to-image capabilities. And we’ve
explored how all of this comes together in the Stable Diffusion model by digging into
the sampling loop and seeing how the different components work together.

In Chapter 7, you’ll learn how to fine-tune Stable Diffusion to add new knowledge
or capabilities to the model. For example, you’ll see how, by showing pictures of your
pet, Stable Diffusion can learn the concept of “your pet” and generate novel images in
new scenarios, such as “your pet on the moon”.

Later, in Chapter 8, we’ll show some of the capabilities we can add to diffusion models
to take them beyond simple image generation. For example, we’ll explore inpainting,
which allows us to mask a part of the image and then fill that part. Chapter 8 also
explores techniques to edit images based on a prompt.

180 | Chapter 5: Stable Diffusion and Conditional Generation

https://oreil.ly/3YkzU
https://oreil.ly/dkoZ3
https://oreil.ly/dkoZ3


Exercises
1. How does the training process of a class-conditioned diffusion model differ from1.

a nonconditioned model, particularly in terms of the input data and the loss
function used?

2. How does the timestep embedding influence the quality and evolution of the2.
images during the diffusion process?

3. Explain the difference between Latent Diffusion and normal diffusion. What are3.
the trade-offs of using Latent Diffusion?

4. How is the text prompt incorporated into the model?4.
5. What is the difference between model-based and classifier-free guidance? What5.

is the benefit of classifier-free guidance?
6. What is the effect of using a negative prompt? Experiment with it using pipe(…,6.

negative_prompt=""). How are you able to guide the image generation using
Stable Diffusion?

7. Let’s say you want to remove white hats from any generated image. How can you7.
use negative prompts for this? First try implementing this using the high-level
pipeline. Then, try adapting the end-to-end inference example. (Hint: It requires
only modifying the random part of the classifier-free conditioning.)

8. What happens in SDXL if you use (256, 256) instead of (1024, 1024) as the8.
“original size” conditioning signal? What happens if you use crop coordinates
other than (0, 0)? Can you explain why?

You can find the solutions to these exercises and the following challenge in the book’s
GitHub repository.

Challenge
Blue guidance. Let’s say we want to bias generated images to a specific color, such as
blue. How can we do that? The first step is to define a conditioning function we’d like
to minimize, which, in this case, will be a color loss:

def color_loss(images, target_color=(0.1, 0.5, 0.9)):
    """Given a target color (R, G, B) return a loss for how far away on
    average the images' pixels are from that color."""
    # Map target color to (-1, 1)
    target = torch.tensor(target_color).to(images.device) * 2 - 1

    # Get shape right to work with the images (b, c, h, w)
    target = target[None, :, None, None]

Challenge | 181

https://oreil.ly/handsonGenAIcode
https://oreil.ly/handsonGenAIcode


7 To simplify things, we recommend using the unconditional DDPMPipeline from Chapter 4.

    # Mean absolute difference between the image pixels and the target color
    error = torch.abs(images - target).mean()
    return error

Given this loss function, write a sampling loop (no training is needed) that modifies x
in the direction of the loss function.7

References
Esser, Patrick, et al. “Scaling Rectified Flow Transformers for High-Resolution Image

Synthesis.” arXiv, March 5, 2024. https://arxiv.org/abs/2403.03206.
Ho, Jonathan, and Tim Salimans. “Classifier-Free Diffusion Guidance.” arXiv, July 25,

2022. http://arxiv.org/abs/2207.12598.
Luccioni, Alexandra Sasha, et al. “Stable Bias: Analyzing Societal Representations in

Diffusion Models.” arXiv, March 20, 2023. http://arxiv.org/abs/2303.11408.
Peebles, William, and Saining Xie. “Scalable Diffusion Models with Transformers.”

arXiv, December 19, 2023. https://arxiv.org/abs/2212.09748.
Podell, Dustin, et al. “SDXL: Improving Latent Diffusion Models for High-Resolution

Image Synthesis.” arXiv, July 4, 2023. http://arxiv.org/abs/2307.01952.
Rombach, Robin, et al. “High-Resolution Image Synthesis with Latent Diffusion

Models.” arXiv, April 13, 2022. http://arxiv.org/abs/2112.10752.
Saharia, Chitwan, et al. “Photorealistic Text-to-Image Diffusion Models with Deep

Language Understanding.” Advances in Neural Information Processing Systems 35
(2022): 36479–36494. arXiv, May 24, 2022. https://arxiv.org/abs/2205.11487.

Schramowski, Patrick, et al. “Safe Latent Diffusion: Mitigating Inappropriate Degen‐
eration in Diffusion Models.” arXiv, April 26, 2023. http://arxiv.org/abs/2211.05105.

Schuhmann, Christoph, et al. “LAION-5B: An Open Large-Scale Dataset for Training
Next Generation Image-Text Models.” arXiv, October 15, 2022. http://arxiv.org/abs/
2210.08402.

Xiao, Han, et al. “Fashion-MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms.” arXiv, September 15, 2017. http://arxiv.org/abs/
1708.07747.

Yang, Zhuoyi, et al. “CogVideoX: Text-to-Video Diffusion Models with an Expert
Transformer.” arXiv, August 12, 2024. https://arxiv.org/abs/2408.06072.

182 | Chapter 5: Stable Diffusion and Conditional Generation

https://arxiv.org/abs/2403.03206
http://arxiv.org/abs/2207.12598
http://arxiv.org/abs/2303.11408
https://arxiv.org/abs/2212.09748
http://arxiv.org/abs/2307.01952
http://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2211.05105
http://arxiv.org/abs/2210.08402
http://arxiv.org/abs/2210.08402
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2408.06072


PART II

Transfer Learning for
Generative Models





CHAPTER 6

Fine-Tuning Language Models

In Chapter 2, we explored how LMs work and how to use them for tasks such as
text generation and sequence classification. We saw that LMs could be helpful in
many tasks without further training, thanks to proper prompting and the zero-shot
capabilities of these models. We also explored some of the hundreds of thousands
of pretrained models by the community. In this chapter, we’ll discuss how we can
improve the performance of LMs on specific tasks by fine-tuning them on our data.

While pretrained models showcase remarkable capabilities, their general-purpose
training may not be suited for certain tasks or domains. Fine-tuning is frequently
used to tailor the model’s understanding to the nuances of their dataset or task.
For instance, in the field of medical research, an LM pretrained on general web
text will not perform great out of the box, so we can fine-tune it on a dataset of
medical literature to enhance its ability to generate relevant medical text or assist
in information extraction from healthcare documents. Another example is for mak‐
ing conversational models. Although large pretrained models can generate coherent
text, they usually don’t work well for generating high-quality conversational text or
following instructions. We can fine-tune this model on a dataset with everyday con‐
versations and informal language structures, adapting the model to output engaging,
conversational text, as the one you would expect in interfaces such as ChatGPT.

The goal of this chapter is to build strong foundations in fine-tuning LLMs, and
hence, we’ll cover the following:

• Classifying the topic of a text using a fine-tuned encoder model•
• Understanding the role of encoder-based models in the modern LLM era•

185



• Generating text in a particular style using a decoder model•
• Solving multiple tasks with a single model via instruction fine-tuning•
• Parameter-efficient fine-tuning techniques that allow us to train models with•

smaller GPUs
• Techniques that will allow us to run inference of the models with less compute•

Classifying Text
Before jumping into the land of generative models, it’s a good idea to understand
the general flow of fine-tuning a pretrained model. We’ll begin with sequence classifi‐
cation, where a model assigns a class to a given input. Sequence classification is one of
the classical ML problems. With it, you can tackle challenges such as spam detection,
sentiment recognition, intent classification, and fake content detection, among many
others. Although it’s a simple task that people frequently solve via prompting a
general-purpose LM, it’s a good starting point to understand the fine-tuning process
and the steps involved.

We’ll fine-tune a model to classify the topic of short news article abstracts. As we’ll
find out soon, fine-tuning requires much less compute and data than training a
model from scratch. The usual process is as follows (Figure 6-1):

1. Identify a dataset for the task.1.
2. Define which model type is needed (encoder, decoder, or encoder-decoder).2.
3. Select a good base model that meets your requirements.3.
4. Preprocess the dataset.4.
5. Define evaluation metrics.5.
6. Train the model.6.
7. Share.7.

186 | Chapter 6: Fine-Tuning Language Models



Figure 6-1. The usual steps of a fine-tuning workflow

Identify a Dataset
Our goal is to adapt a general-purpose pretrained LM to work as a text classifier, and
we need to teach it the categories it needs to detect. This leads to us needing a labeled
dataset for sequence classification. Depending on your task and use case, you can use
a public or private dataset (e.g., a dataset from your company). Some good places to
find public datasets are Hugging Face Datasets, Kaggle, Zenodo, and Google Dataset
Search. With hundreds of thousands of datasets out there, we need help finding a
suitable dataset for our use case. One approach can be to filter for text-classification
datasets on Hugging Face.

Among the most downloaded datasets is the AG News dataset, a well-known non‐
commercial dataset used for benchmarking text-classification models and research‐
ing data mining, information retrieval, and data streaming.

Sometimes you will want to share a dataset with the community.
To do that, you can upload it as a dataset repository. The datasets
library has out-of-the-box support for common data types (audio,
images, text, CSV, JSON, pandas DataFrames, etc.).

Classifying Text | 187

https://oreil.ly/uMGkw
https://oreil.ly/All2r
https://zenodo.org/
https://oreil.ly/sukKP
https://oreil.ly/sukKP
https://oreil.ly/36JyT
https://oreil.ly/36JyT
https://oreil.ly/uPJHa


The first instinct should be to explore the dataset. As shown in the following code,
the dataset contains two columns: one with the text and one with the label. The
dataset provides 120,000 training samples, more than enough data to fine-tune a
model. Fine-tuning requires very little data compared to pretraining a model, and
just using a few thousand examples should be enough to get a good baseline model:

from datasets import load_dataset

raw_datasets = load_dataset("fancyzhx/ag_news")
raw_datasets

DatasetDict({
    train: Dataset({
        features: ['text', 'label'],
        num_rows: 120000
    })
    test: Dataset({
        features: ['text', 'label'],
        num_rows: 7600
    })
})

Let’s explore how a specific example looks:

raw_train_dataset = raw_datasets["train"]
raw_train_dataset[0]

{'label': 2,
 'text': 'Wall St. Bears Claw Back Into the Black (Reuters) Reuters '
         "- Short-sellers, Wall Street's dwindling\\band of "
         'ultra-cynics, are seeing green again.'}

The first sample contains the text and a label, which is…2? To which class does 2
refer? To figure this out, we can inspect the dataset features and its label field:

print(raw_train_dataset.features)

{'label': ClassLabel(names=['World',
                            'Sports',
                            'Business',
                            'Sci/Tech'],
                     id=None),
 'text': Value(dtype='string', id=None)}

So a label of 0 means news about the world, 1 about sports, 2 about business, and 3
about science and tech. With this figured out, let’s decide which model to use.

188 | Chapter 6: Fine-Tuning Language Models



Define Which Model Type to Use
Let’s recap Chapter 2. We can use one of three types of transformers, depending on
which type of task we’re trying to solve:

Encoder models
They obtain rich semantic representations from sequences, capturing the mean‐
ing of the input, which can be used for various tasks relying on the input’s
semantic information (e.g., identifying entities in the text or classifying the
sequence). A small network can be added on top of these embeddings to train for
a specific downstream task.

Decoder models
These models are designed to generate new sequences, such as text. They take an
input (often an embedding or context) and produce coherent output sequences,
making them ideal for text-generation tasks.

Encoder-decoder models
These models are well suited for tasks that require transforming an input
sequence into a different output sequence, such as machine translation or sum‐
marization. The encoder processes the input while the decoder generates the
corresponding output.

Considering the task of topic classification for short news article abstracts, we have
three possible approaches:

1. Zero or few-shot learning
We can use a high-quality pretrained model, explain the task (e.g., “classify
into these four categories”), and let the model do the rest. This approach does
not require any fine-tuning and is very common nowadays with powerful pre‐
trained models—a single model can solve many tasks by formulating them as
text-generation problems.

2. Text-generation model
Fine-tune a text-generation model to generate the label (e.g., “business”) given an
input news article. We could use either a decoder or an encoder-decoder model
here.

3. Encoder model with classification head
Fine-tune an encoder model by adding a simple classification network (called
head) to the embeddings. This approach provides a specialized and efficient
model tailored to our use case, making it a favorable choice for our topic-
classification task.

Based on the preceding, we’ll choose the third approach.

Classifying Text | 189



Select a Good Base Model
We require a model that:

• Has an encoder-based architecture•
• Is small enough that we can fine-tune in a few minutes on a GPU•
• Has solid pretraining results•
• Can process short sequences of text•

BERT, although old, is a great base encoder architecture for fine-tuning. Given that
we want to train the model quickly and with little computing power, we can use
DistilBERT, which is 40% smaller and 60% faster while retaining 97% of BERT
capabilities. Given the base model, we can fine-tune it for multiple downstream tasks,
such as answering questions or classifying text.

Apart from the original BERT and DistilBERT, many other models can be used as
base models for fine-tuning. We won’t dive into each of them, but knowing they exist
is important. Some examples are RoBERTa, ALBERT, Electra, DeBERTa, Longformer,
LuKE, MobileBERT, and Reformer. Each model has its own training procedure and
builds upon the original BERT model. Which one to choose depends on your specific
requirements, but using DistilBERT is a good starting point given our computing
requirements. DeBERTa is among the SOTA at the time of writing.

Preprocess the Dataset
As explained in Chapter 2, each LM comes with its tokenizer. To fine-tune Distil‐
BERT, we must ensure that the whole dataset is tokenized with the same tokenizer
that was used to pretrain the model. We can use AutoTokenizer to load the appropri‐
ate one, and then we can define a function that will tokenize a batch of samples. The
transformers library expects all inputs in a batch to be the same length: by adding
padding=True, we add zeros to the samples so that they all have the same size as the
longest input sample.

It’s important to note that transformer models have a maximum context size—the
maximum number of tokens an LM can use when making predictions. For Distil‐
BERT, this limit is 512 tokens, so don’t try to use it for entire books. Fortunately,
most of our samples are small abstracts, but some may still exceed this token limit. To
handle this, we can use truncation=True, which will truncate all samples to fit within
the model’s context length. However, this approach comes with a trade-off: truncating
the text means that some potentially useful information might be lost.

Handling long contexts with transformers is an active research area. For scenarios
involving encoder-based models and long contexts, you can try out several strategies:

190 | Chapter 6: Fine-Tuning Language Models

https://arxiv.org/abs/1910.01108
https://oreil.ly/VZMrc


• Use a specialized long-context transformer model, such as Longformer.•
• Divide the text into smaller segments and process them separately.•
• Use a sliding window approach to process the text in chunks.•
• Summarize the text as a preprocessing step, then feed the summary to the model.•

Which strategy to pick depends on the task and model. For example, if you want to
analyze the sentiment of a book, use chunking and analyze different parts of the book
separately. If you want to classify the topic of a long article, you could summarize the
article and then classify the summary.

Although models come with an out-of-the-box context length,
which refers to the number of tokens the model can consider
at a time, techniques such as rotary embeddings allow us to use
longer or even infinite context lengths. We’ll discuss more about
this later on.

Let’s tokenize two samples to inspect the output:

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def tokenize_function(batch):
    return tokenizer(
        batch["text"], truncation=True, padding=True, return_tensors="pt"
    )

tokenize_function(raw_train_dataset[:2])

{'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]),
 'input_ids': tensor([[  101,  2813,  2358,  1012,  6468, 15020,  2067,  2046,
          1996,  2304,  1006, 26665,  1007, 26665,  1011,  2460,
          1011, 19041,  1010,  2813,  2395,  1005,  1055,  1040,
         11101,  2989,  1032,  2316,  1997, 11087,  1011, 22330,
          8713,  2015,  1010,  2024,  3773,  2665,  2153,  1012,
           102,     0,     0,     0,     0,     0,     0,     0,
             0,     0,     0,     0,     0],
        [  101, 18431,  2571,  3504,  2646,  3293, 13395,  1006,
         26665,  1007, 26665,  1011,  2797,  5211,  3813, 18431,
          2571,  2177,  1010,  1032,  2029,  2038,  1037,  5891,

Classifying Text | 191



          2005,  2437,  2092,  1011, 22313,  1998,  5681,  1032,
          6801,  3248,  1999,  1996,  3639,  3068,  1010,  2038,
          5168,  2872,  1032,  2049, 29475,  2006,  2178,  2112,
          1997,  1996,  3006,  1012,   102]])}

In this example, tokenize_function() takes a batch of samples, tokenizes them
using the DistilBERT tokenizer, and ensures uniform length by padding and truncat‐
ing as needed. As you can check out, the first element was shorter than the second,
so it has some additional tokens with an ID of 0 at the end. The zeros correspond to
the [PAD] token, which will be ignored during inference. Note that the attention mask
for this sample also has 0 at the end; this ensures that the model pays attention only to
the actual tokens.

Now that you understand the tokenization, we can use the map() method to tokenize
the whole dataset. This method applies a function to each element of the dataset in
parallel:

tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets

DatasetDict({
    train: Dataset({
        features: ['text', 'label', 'input_ids', 'attention_mask'],
        num_rows: 120000
    })
    test: Dataset({
        features: ['text', 'label', 'input_ids', 'attention_mask'],
        num_rows: 7600
    })
})

Define Evaluation Metrics
In addition to monitoring the loss during training, it’s usually a good idea to define
some downstream metrics to better evaluate and monitor the model’s performance.
We’ll leverage the evaluate library, a handy tool with a standardized interface for vari‐
ous metrics. The choice of metrics depends on the task. For sequence classification,
suitable candidates can be the following:

Accuracy
Represents the proportion of correct predictions out of all predictions, providing
a high-level overview of the model’s overall performance. It’s a good metric for
balanced datasets and is easy to interpret. However, it can be misleading for
imbalanced datasets.

Precision
This is the ratio of correctly labeled positive instances to all instances predicted as
positive. It helps us understand the accuracy of the model’s positive predictions.

192 | Chapter 6: Fine-Tuning Language Models



1 The harmonic mean is a type of average useful when dealing with ratios, as it gives more weight to lower
values.

Precision should be used when the cost of false positives is high, such as spam
detection.

Recall
This metric indicates the proportion of actual positive instances that were cor‐
rectly predicted by the model. It reflects the model’s ability to capture all positive
instances, and it will be lower if there are many false negatives. Recall should be
used when the cost of false negatives is high, such as in medical diagnosis.

F1 score
The F1 score is the harmonic mean of precision and recall,1 offering a balanced
measure that considers both false positives and false negatives and penalizes
strong discrepancies between precision and recall. F1 is often used for imbal‐
anced datasets and is a good default metric for classification tasks.

Metrics in evaluate provide a description attribute and a compute() method to
obtain the metric given the labels and model predictions:

import evaluate

accuracy = evaluate.load("accuracy")
print(accuracy.description)
print(accuracy.compute(references=[0, 1, 0, 1], predictions=[1, 0, 0, 1]))

('Accuracy is the proportion of correct predictions among the total '
 'number of cases processed. It can be computed with:'
 'Accuracy = (TP + TN) / (TP + TN + FP + FN)'
 ' Where:'
 'TP: True positive'
 'TN: True negative'
 'FP: False positive'
 'FN: False negative')
{'accuracy': 0.5}

Let’s define a compute_metrics() function that, given a prediction instance (which
contains both the label and predictions), returns a dictionary with the accuracy and
the F1 score. When we evaluate the model during the training, we will automatically
use this function to monitor its progress:

f1_score = evaluate.load("f1")

def compute_metrics(pred): 
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1) 

Classifying Text | 193



    # Compute accuracy and F1 Score
    acc_result = accuracy.compute(references=labels, predictions=preds)
    acc = acc_result["accuracy"] 

    f1_result = f1_score.compute(
        references=labels, predictions=preds, average="weighted"
    )
    f1 = f1_result["f1"] 

    return {"accuracy": acc, "f1": f1} 

compute_metrics() expects an EvalPrediction instance. An EvalPrediction is
a utility class used by the Trainer that contains the labels and model predictions
for a sample.

Use argmax to get the predicted class with the highest probability.

Use the loaded accuracy to compute the accuracy score between labels and
predictions. Recall that accuracy outputs a dictionary with the accuracy key.

Repeat with the F1 score. As we have multiple classes, we use the weighted=True
argument. This means that we calculate F1 for each class and then average them,
weighted by the number of true instances for each class.

Finally, return both metrics by building a dictionary.

Train the Model
Time to train. Recall that DistilBERT is an encoder model. If we use the raw model
as is, we’ll get the embeddings, as we did in Chapter 2, so we cannot use this model
directly. For classifying text sequences, we feed these embeddings to a classification
head (see Figure 6-2). When fine-tuning, we won’t use fixed embeddings: all the
model parameters, the original weights, and the classification head are trainable. This
requires the head to be differentiable and leads us to use a neural network on top of
the base transformer. This head will take the embeddings as input and output class
probabilities. Why do we train all the weights? By training all the parameters, we help
make the embeddings more useful for this specific classification task.

194 | Chapter 6: Fine-Tuning Language Models



Figure 6-2. BERT with a classification head. In practice, the embedding corresponding to
CLS is used as the pooled embedding and can be used for classification tasks.

Although we’ll use a simple feed-forward network, we can use more-complex net‐
works as the head or even classic models, such as Logistic Regression or Random
Forests (in which case we use the model as a feature extractor and freeze the weights).
Using a simple layer works well, is computationally efficient, and is the most common
approach.

If you’ve done transfer learning in Computer Vision, you might be
familiar with the concept of freezing the weights of the base model.
This is frequently not done in NLP, as our goal is to make the
internal language representations more useful for the downstream
task. In Computer Vision, it’s frequent to freeze some layers as the
features learned by the base model are more general and useful
for many tasks. For example, some layers capture generic features
like edges or textures, which are broadly applicable across vision
tasks. Whether to freeze or unfreeze layers depends on the context,
including the dataset size, the amount of computing, and the simi‐
larity between the pretraining and fine-tuning tasks. Later in the
chapter, you’ll learn about a technique called adapters, which allow
us to work with frozen LLMs.

Classifying Text | 195



To train the model with the classification head, we can load the model with Auto
ModelForSequenceClassification. This will do two things:

• Load the specified model (DistilBERT in this case) without its masked language•
model head. This is the encoder part of the model, which outputs an embedding
for each token. It additionally outputs a pooled embedding, which captures
information for the whole sequence.

• Add a randomly initialized classification head on top of the model. This head•
is only a linear layer that receives the pooled embedding and outputs the class
probabilities.

Let’s see how this is implemented:

import torch
from transformers import AutoModelForSequenceClassification

from genaibook.core import get_device

device = get_device()
num_labels = 4
model = AutoModelForSequenceClassification.from_pretrained(
    checkpoint, num_labels=num_labels
).to(device)

('Some weights of DistilBertForSequenceClassification were not
 initialized from the model checkpoint at distilbert-base-uncased
 and are newly initialized: ["classifier.bias",
 "classifier.weight", "pre_classifier.bias",
 "pre_classifier.weight"]
 You should probably TRAIN this model on a down-stream task to be
 able to use it for predictions and inference.')

You will get a warning about some weights being newly initialized. This makes sense;
we have a new head suitable for our classification task and need to train it.

With our model initialized, we can finally train it. We can take various approaches
to train the model. If you’re familiar with PyTorch, you can write your training
loop. Alternatively, transformers provides a high-level class called Trainer, which
streamlines much of the training loop complexity.

The first step before creating our Trainer is to define TrainingArguments, as shown
in the following code example. TrainingArguments specifies the hyperparameters
used for training, such as learning rate and weight decay, determining the number
of samples per batch, setting evaluation intervals, and deciding whether we want to
share our model with the ecosystem by pushing it to the Hub. We won’t modify the

196 | Chapter 6: Fine-Tuning Language Models



2 There are dozens of arguments you can modify. We suggest exploring the Trainer class documentation to
understand all the options available.

3 A handy tool to estimate how much VRAM is needed to perform inference and training is the Model Memory
Calculator.

hyperparameters, because the defaults provided by the TrainingArguments generally
perform well. Still, we encourage you to explore and experiment with them. The
Trainer class is a robust and flexible tool.2

from transformers import TrainingArguments

batch_size = 32  # You can change this if you have a big or small GPU
training_args = TrainingArguments(
    "classifier-chapter4",
    push_to_hub=True, 
    num_train_epochs=2, 
    eval_strategy="epoch", 
    per_device_train_batch_size=batch_size, 
    per_device_eval_batch_size=batch_size,
)

Whether or not to push the model to the Hugging Face Hub every time the
model is saved. You can change how often the model is saved with save_strat
egy, which is done every few hundred steps by default.

Total number of epochs to perform; an epoch is a full pass through the training
data.

When to evaluate the model on the validation set. It’s done every 500 steps by
default, but by specifying epoch, the evaluation happens at the end of each epoch.

The batch size per core for training. You can reduce this if your GPU is running
out of memory. Alternatively, you can use auto_find_batch_size=True to find
the largest batch size that fits on your GPU.3

We now have all the pieces we need:

• A pretrained model with a proper head ready to be fine-tuned•
• The training arguments•
• A function that will compute metrics•
• A training and evaluation dataset•
• A tokenizer, which we add to ensure it’s pushed with the model to the Hub•

Classifying Text | 197

https://oreil.ly/5ocQU
https://oreil.ly/M2A2l
https://oreil.ly/M2A2l


The AG News dataset contains 120,000 samples, more than we need to get good
initial results. To make an initial quick training run, we’ll use 10,000 samples, but feel
free to play with this number—more data should yield better results. Note that we’ll
still evaluate with the whole test set:

from transformers import Trainer

# Shuffle the dataset and pick 10,000 examples for training
shuffled_dataset = tokenized_datasets["train"].shuffle(seed=42)
small_split = shuffled_dataset.select(range(10000))

# Initialize the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=small_split,
    eval_dataset=tokenized_datasets["test"],
    tokenizer=tokenizer,
)

With everything ready and the Trainer initialized, it’s time to train:

trainer.train()

The training will report the loss, the evaluation metrics, and training speed details.
Table 6-1 provides a summarized view.

Table 6-1. Training and evaluation metrics for DistilBERT
fine-tuning on the AG News dataset

Metric Epoch 1 value Epoch 2 value

eval_loss 0.2624 0.2433

eval_accuracy 0.9117 0.9184

eval_f1 0.9118 0.9183

eval_runtime 15.2709 14.5161

eval_samples_per_second 497.678 523.557

eval_steps_per_second 15.585 16.396

train_runtime - 213.9327

train_samples_per_second - 93.487

train_steps_per_second - 2.926

train_loss - 0.2714

Hopefully, that took just a little bit of time. The final evaluation accuracy and F1
score were close to 92%, which is OK, especially given we’re using less than 10% of
the available training data. The evaluation loss decreases between epochs, which is

198 | Chapter 6: Fine-Tuning Language Models



exactly what we were aiming for. If you want to share the final model for others to
access, you need to make a call to push_to_hub at the end. You can find our model on
the Hub:

trainer.push_to_hub()

Although using the Trainer might appear like a black box, under the hood, it’s just
making regular PyTorch training loops as we did to train simple diffusion models in
Chapter 3. Writing such a loop from scratch would look something like this:

from transformers import AdamW, get_scheduler

optimizer = AdamW(model.parameters(), lr=5e-5) 
lr_scheduler = get_scheduler("linear", ...) 

for epoch in range(num_epochs): 
    for batch in train_dataloader: 
        batch = {k: v.to(device) for k, v in batch.items()} 
        outputs = model(**batch)
        loss = outputs.loss 
        loss.backward()

        optimizer.step() 
        lr_scheduler.step()
        optimizer.zero_grad()

The optimizer holds the current state of the model and will update the parame‐
ters based on the gradients.

A learning rate scheduler that defines how the learning rate changes through
training.

Iterate over all data for a number of epochs.

Iterate over all batches in the training data.

Move the batch to the device and run the model.

Compute the loss and backpropagate.

Update the model parameters, adjust the learning rate, and reset the gradients to
zero.

The Trainer takes care of this, from doing evaluations and predictions, pushing the
models to the Hub, training on multiple GPUs, saving instant checkpoints, logging,
and many other things.

Classifying Text | 199

https://oreil.ly/k5BP5
https://oreil.ly/k5BP5


If you pushed the model to the Hub, others can now access it using AutoModel or
pipeline(). Let’s try out an example:

# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline(
    "text-classification",
    model="genaibook/classifier-chapter4",
    device=device,
)
pipe(
    """The soccer match between Spain and
Portugal ended in a terrible result for Portugal."""
)

[{'label': 'Sports', 'score': 0.8631355166435242}]

The prediction appears to be correct. On your first try, you might get LABEL_1 instead
of Sports. This is because the model doesn’t have knowledge of the intrinsic label
names. To update them, you can update the config.json file by adding the id2label
and label2id mappings. This will make the predictions more human readable and
interpretable.

Let’s do a deep dive into the metrics. You can either use Trainer.predict or
pipe.predict to get the predictions. The Trainer.predict method returns a
PredictionOutput object, which contains the predictions, label IDs, and metrics,
while pipe.predict returns a list of dictionaries with the predictions and the corre‐
sponding labels. Let’s confirm that things make sense by looking at the first three
sample texts with their corresponding predictions and labels. Running some samples
through the network is always important to ensure that things work correctly:

# Get prediction for all samples
model_preds = pipe.predict(tokenized_datasets["test"]["text"])

# Get the dataset labels
references = tokenized_datasets["test"]["label"]

# Get the list of label names
label_names = raw_train_dataset.features["label"].names

# Print results of the first 3 samples
samples = 3
texts = tokenized_datasets["test"]["text"][:samples]
for pred, ref, text in zip(model_preds[:samples], references[:samples], texts):
    print(f"Predicted {pred['label']}; Actual {label_names[ref]};")
    print(text)

('Predicted Business; Actual Business; Fears for T N pension after '
 'talks Unions representing workers at Turner Newall say they are '
 "'disappointed' after talks with stricken parent firm Federal "

200 | Chapter 6: Fine-Tuning Language Models



 'Mogul.'
 '\n'
 'Predicted Sci/Tech; Actual Sci/Tech; The Race is On: Second '
 'Private Team Sets Launch Date for Human Spaceflight (SPACE.com) '
 'SPACE.com - TORONTO, Canada -- A second\team of rocketeers '
 'competing for the  #36;10 million Ansari X Prize, a contest '
 'for\\privately funded suborbital space flight, has officially '
 'announced the first\\launch date for its manned rocket.'
 '\n'
 'Predicted Sci/Tech; Actual Sci/Tech; Ky. Company Wins Grant to '
 'Study Peptides (AP) AP - A company founded by a chemistry '
 'researcher at the University of Louisville won a grant to develop '
 'a method of producing better peptides, which are short chains of '
 'amino acids, the building blocks of proteins.')

The prediction is aligned with the reference, and the label makes sense. Let’s now dive
into the metrics.

In ML classification tasks, a confusion matrix serves as a table summarizing a model’s
performance, depicting counts of true positive, true negative, false positive, and false
negative predictions. For multiclass classification, the matrix becomes a square with
dimensions equal to the number of classes, where each cell represents the counts of
instances for the combination of labels and predicted classes. Rows indicate actual
(ground truth) classes, while columns indicate predicted classes. We can normalize
the matrix so that each row adds up to 1, making it easier to interpret the model’s
performance across different classes. Analyzing this matrix provides insights into the
model’s strengths and weaknesses in distinguishing between specific classes.

We’ll use evaluate to load and compute the confusion matrix and the Confusion
MatrixDisplay from sklearn to visualize it. The confusion matrix will help us under‐
stand where the model is making mistakes and which classes are more challenging to
predict. For example, by looking at the following confusion matrix, we can check that
business articles are often mislabeled as sci/tech articles:

import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay

# Convert predicted labels to ids
label_to_id = {name: i for i, name in enumerate(label_names)}
pred_labels = [label_to_id[pred["label"]] for pred in model_preds]

# Compute confusion matrix
confusion_matrix = evaluate.load("confusion_matrix")
cm = confusion_matrix.compute(
    references=references, predictions=pred_labels, normalize="true"
)["confusion_matrix"]

# Plot the confusion matrix
fig, ax = plt.subplots(figsize=(6, 6))
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=label_names)

Classifying Text | 201



disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
plt.title("Normalized confusion matrix")
plt.show()

Still Relevant?
Training an encoder model on text classification might appear almost quaint in the
post-ChatGPT era. Can’t we prompt a cheap model to “Classify the text into one
of the following categories…”? While it is tough to beat the convenience of fast
generalist models, in some cases small, custom classifiers prove helpful—particularly
in applications where speed and efficiency are key.

For example, one domain in which these models shine is the preparation of training
data for today’s largest LLMs, which involves processing vast quantities of text. In the
Llama 3 paper, the authors apply something they call “model-based quality filtering,”
in which a “quality classifier” is trained and then used to score documents for quality
filtering. The authors state, “We use DistilRoberta to generate quality scores for

202 | Chapter 6: Fine-Tuning Language Models

https://arxiv.org/abs/2407.21783


each document for efficiency reasons.” The training data for this quality model is
predictions from Llama 2; it would have been extremely costly to use Llama 2 directly
on the many trillions of tokens’ worth of data that had to be filtered. A similar
approach was used by the team behind Phi-3, and by the FineWeb authors to curate
the most educational content for their FineWeb Edu subset. The authors wrote an
excellent blog post on their recipes and the importance of quality filtering.

Another helpful use of small and fast encoder-based models is obtaining embeddings
for retrieval systems, where the goal is to find the most similar documents to a given
query. A final example of their usage is guardrailing, where you use a small model to
check the input to a model to detect if it’s malicious or to check the model’s output
to ensure it’s not harmful. In all these cases, the speed and efficiency of a small model
are key.

With all that said, today’s trend is away from these small, specialized models and
toward more-capable generalist models. Still, there is room for customization (hence
this book), so let’s discuss how we can apply a similar process to the one we’ve
outlined to generate text: find (or create) a dataset, pick a model, define evaluation
metrics, and train the model.

Generating Text
We’ve just fine-tuned an encoder-based model for text classification. Now, let’s dive
into training a model for text generation. While in text classification, our labels
are a list of discrete options (World, Sports, Business, and Sci/Tech), training and
fine-tuning a generative model means doing the next token prediction task, where
the labels are text outputs.

For instance, if our goal is to generate code, we can gather a substantial dataset of
permissible code (such as The Stack) and train a model from scratch. Although this is
interesting, it would require a lot of compute to get decent results (leading to multiple
training weeks or months).

Instead of training a model from scratch for open-ended text generation, we can
fine-tune an existing model to generate text in a specific style. This approach allows
us to benefit from the model’s preexisting knowledge about the language, drastically
reducing the need for extensive data and computing power. For example, you could
employ a few hundred tweets to generate new ones in your distinctive writing style.

Generating Text | 203

https://arxiv.org/abs/2404.14219
https://oreil.ly/ddh7Q
https://oreil.ly/8F37c


With Labels or Without Labels?
With the next token prediction task, we do not need to explicitly label the data as we
did for classification; the model will learn to predict the next token based on the input
text. This has allowed us to build large-scale datasets from the web.

On the other hand, a new family of techniques, Reinforcement Learning with Human
Feedback (RLHF), allows us to steer the model’s output by providing feedback. This
is particularly useful for conversational models, where you can provide preferences
or corrections to the model’s output. This is why many chatbots have a thumbs-up/
thumbs-down button or provide side-by-side generated text for users to select the
best one. Even then, preference optimization is just one component of the training
process, and the model still needs to learn from data unsupervised. We’ll discuss more
about RLHF in Chapter 10.

Let’s continue the news theme and fine-tune a model to generate news in a specific
style, such as business news. We can use the same AG News dataset. Let’s start by
filtering all samples labeled as business (where the label is 2) and removing the
unnecessary label column:

filtered_datasets = raw_datasets.filter(lambda example: example["label"] == 2)
filtered_datasets = filtered_datasets.remove_columns("label")

Picking the Right Generative Model
The second question is which base model to use. As our goal is to do text generation,
we need a decoder model. With thousands of models available, we need to choose
one that fits our requirements. Let’s discuss some of the key factors that might
influence our decision:

Model size
Deploying a model with 60 billion parameters locally on your computer won’t
be practical. The choice of model size depends on factors like expected inference
time, hardware capacity, and deployment requirements. Later in this chapter,
we’ll explore techniques that enable running models with more parameters using
the same computing resources.

Training data
The performance of your fine-tuned model correlates with how closely the
training data of the base model aligns with your inference data. For instance,
fine-tuning a model to generate code in your codebase style is more effective
when starting with a model pretrained on code. Consider the specificity of data

204 | Chapter 6: Fine-Tuning Language Models



4 For a detailed explanation, refer to the Leaderboard blog post.

sources, especially if not all models disclose their training data. Similarly, you
will want to use something other than a predominantly English-based model for
Korean text generation (such as multilingual or a Korean-trained model). Not all
models disclose their data sources, which can make it challenging to identify this.

Context length
As discussed before, different models have different context length limits. For
example, if the context length is 1,024, the model can use the last 1,024 tokens to
make predictions. To generate long-form text, you will need a model with a large
context length. We’ll explore ways to work with longer contexts later in the book.

License
The licensing aspect is crucial when selecting a base model. Consider whether
the model aligns with your usage requirements. Models may have commercial
or noncommercial licenses, and there’s a distinction between open source and
open-access licenses. Understanding these licenses is essential to ensure compli‐
ance with legal and usage restrictions. For example, although some models may
permit commercial use, they can specify permissive use cases and scenarios
where the model should not be used. In other cases, the license may limit how
the model’s output can be used (e.g., prohibiting using the output of a model to
train another model).

Assessing generation models remains a challenge, with various benchmarks evaluat‐
ing specific aspects. Benchmarks such as ARC for science questions, HellaSwag for
common sense inference, and others serve as proxies for different capabilities. The
Hugging Face Open LLM Leaderboard collects benchmark results for thousands of
models and allows filtering according to model size and type. However, it’s essential
to note that these benchmarks are tools for systematic comparison, and the final
model choice should always be based on its performance in your real-world task.
Many of the benchmarks used in the Open LLM Leaderboard are not focused on
conversation, and hence, they should not be used as the main criteria for picking a
conversational model. The choice of model depends on your use case, and selecting a
model based on a single metric is not recommended.

The Leaderboard considers a set of challenging benchmarks:4

MMLU-Pro (knowledge)
This is a knowledge dataset containing 12,000 multiple-choice questions. Each
question includes a passage and 10 answer choices. The questions are about
math, physics, economics, psychology, business, and more disciplines.

Generating Text | 205

https://oreil.ly/cNFB-
https://oreil.ly/1huVO


5 Nonexperts (having or pursuing a PhD in a field different than the question) answered the questions with
unrestricted time and full access to the internet (except using LLMs). They were paid $10 for attempting
to answer each question and a $30 bonus for answering correctly. On average, they spent 37 minutes per
question and even then had a 34% accuracy!

GPQA (complex knowledge)
This is a small dataset of challenging, graduate-level, multiple-choice physics,
chemistry, and biology questions. The questions are designed by domain experts
(having or pursuing a PhD in the respective field) and are expected to be chal‐
lenging even for nonexperts (skilled humans from other fields with access to the
internet—the GP in GPQA stands for “Google-Proof ”).5

MuSR (multistep reasoning)
This contains complex problems with around a thousand words each, which
presents challenges for short-context models. The problems can include murder
mysteries, team allocation, and object placements.

MATH (problem-solving)
This contains over 12,000 problems from high-school math exams. There are
different levels of difficulty, and the LLM Leaderboard uses only the hardest,
level 5.

BBH (mix)
This benchmark contains a suite of 23 challenging tasks that require some mul‐
tistep reasoning. The tasks cover algorithmic and arithmetic reasoning (e.g.,
Boolean expressions, geometric shapes, and navigation), natural language under‐
standing (e.g., sarcasm detection and adjective ordering), world knowledge (e.g.,
understanding sports and recommending movies), and reasoning (translation
error detection). This benchmark is correlated with human preference.

IFEval (instruction-following)
This dataset evaluates whether a model can follow instructions such as “mention
the keyword Y at least three times” or “write in less than ten words”.

Out of the six benchmarks used by the LLM Leaderboard, only IFEval is specifically
targeted toward conversational models. We’ll discuss conversational models later in
the chapter. Our current goal is generating text in a specific style, so we’ll focus on
that. Table 6-2 shows a couple of popular open-access pretrained LLMs.

206 | Chapter 6: Fine-Tuning Language Models



Table 6-2. A selection of popular open-access pretrained LLMs and their performance on the
Open LLM Leaderboard

Model Creator Size Training data Open LLM
performance

Context
length

Vocab size License

GPT-2 OpenAI 117M
380M
812M
1.6B

Unreleased
Up to 40 GB of text
from a web scrape

6.51
5.81
5.48
4.98

1,024 50,257 MIT

GPT-Neo EleutherAI 125M
1.3B
2.7B

The Pile
300B tokens
380B tokens
420B tokens

4.38
5.33
6.34

2,048 50,257 MIT

Falcon TII UAE 7B
11B
40B
180B

Partially released
Refined
Web built on top
of CommonCrawl
1.5T tokens
1T tokens
3.5T tokens

5.1
13.78
11.33
N/A

8,192 65,024 Apache 2.0
(7B and
40B)
Custom
(11B and
180B)

Llama 2 Meta 7B
13B
70B

Unreleased
2T tokens

8.72
10.99
18.25

4,096 32,000 Custom

Llama 3 Meta 8B
70B

Unreleased
15T tokens

13.41
26.37

8,192 128,256 Custom

Llama 3.1 Meta 8B
70B
405B

Unreleased
15T tokens

13.78
25.91
N/A

131,072 128,256 Custom

Mistral Mistral 7B Unreleased 14.5 8,192 32,000 Apache 2.0

Mixtral Mistral 8x7B
8X22Ba

Unreleased 19.23
25.49

32,768
65,536

32,000 Apache 2.0

Qwen 2 Alibaba 500M
1.5B
7B
72B

Unreleased 7.06
10.32
23.66
35.13

131,072 ~150,000 Custom

Phi (1,
1.5, 2)

Microsoft 1.42B
1.42B
2.78

54B tokens
150B tokens
1.4T tokens

5.52
7.06
15.45

2,048 51,200 MIT

a What does “8x7B” mean in the “Mixtral” model? This means the model is a Mixture of Experts (MoE), a special model
architecture you’ll learn more about in Chapter 10. In short, it’s a model with multiple smaller models, and an internal
mechanism decides which models to use for each token. Comparing a number of parameters between MoE models and
regular dense models is not straightforward, as you’ll learn more about later.

Generating Text | 207



This table is not exhaustive; there are many other open LLMs, such as Google
Gemma, Mosaic MPT, and Cohere Command R+, and when this book is published,
there will likely be many others. Similarly, this table does not cover code models. For
those, you might want to review the Big Code Models Leaderboard, where you can
find models such as CodeLlama (a popular model from Meta) and BigCode’s model
(a model trained with permissively licensed code).

Additionally, it’s worth noting that this table is biased toward models trained
on mostly English data. However, powerful Chinese models such as InternLM,
ChatGLM, and Baichuan are also noteworthy contributors to the expanding land‐
scape of pretrained LMs. This information serves as a guide on what to consider
when choosing a model for experimentation rather than an exhaustive list of open
source models.

Training a Generative Model
Given that we want to do a quick training with very little data that can run in an
environment without a powerful GPU, we’ll fine-tune SmolLM’s smallest variant. We
encourage you to experiment with larger models and different datasets. Later in the
chapter, we’ll explore techniques for using larger models for inference and training.

Just as before, we’ll begin by loading the model and the tokenizer. One particular
thing about SmolLM is that it does not specify a padding token, but we require one
when tokenizing, as it’s used to ensure all samples have the same length. We can set
the padding token to be the same as the end-of-text token:

from transformers import AutoModelForCausalLM

model_id = "HuggingFaceTB/SmolLM-135M"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = (
    tokenizer.eos_token
)  # Needed as SmolLM does not specify padding token.
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)

We’ll tokenize the dataset (but using SmolLM’s tokenizer):

def tokenize_function(batch):
    return tokenizer(batch["text"], truncation=True)

tokenized_datasets = filtered_datasets.map(
    tokenize_function,
    batched=True,
    remove_columns=["text"],  # We only need the input_ids and attention_mask
)

tokenized_datasets

208 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/gZZ6v


DatasetDict({
    test: Dataset({
        features: ['input_ids', 'attention_mask'],
        num_rows: 1900
    })
    train: Dataset({
        features: ['input_ids', 'attention_mask'],
        num_rows: 30000
    })
})

In the topic classification example, we padded and truncated all samples to ensure
they were the same length. Apart from doing it in the tokenization stage, we can do
it using data collators. These utilities assemble samples into a batch. The transformers
library provides some out-of-the-box collators for tasks (such as language modeling).
The collator will dynamically pad the examples in a batch to the maximum length.
Apart from the padding, the language-modeling collator structures the inputs for the
language-modeling task, which is slightly more complex than before. In language
modeling, we shift the inputs by one element and use that as a label. For example, if
the input is “I love Hugging Face”, the label is love Hugging Face. The model aims
to predict the next token given the previous ones. In practice, the data collator will
create a label column with a copy of the inputs. Later, the model will take care of
shifting the inputs and labels.

The following code shows how to create the data collator for causal language
modeling:

from transformers import DataCollatorForLanguageModeling

# mlm corresponds to masked language modeling
# and we set it to False as we are not training a masked language model
# but a causal language model
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

Let’s check out how this works for three samples. As shown here, each sample has a
different length (37, 55, and 51):

samples = [tokenized_datasets["train"][i] for i in range(3)]

for sample in samples:
    print(f"input_ids shape: {len(sample['input_ids'])}")

input_ids shape: 37
input_ids shape: 55
input_ids shape: 51

Generating Text | 209



Thanks to the collator, the samples are padded to the maximum length in the batch
(55) and a label column is added:

out = data_collator(samples)
for key in out:
    print(f"{key} shape: {out[key].shape}")

input_ids shape: torch.Size([3, 55])
attention_mask shape: torch.Size([3, 55])
labels shape: torch.Size([3, 55])

Finally, we need to define the training arguments. By adjusting any of several key
parameters of TrainingArguments, such as those that follow, we can exert some
control over the model training:

Weight decay
This regularization technique prevents model overfitting by adding a penalty
term to the loss function. It discourages the learning algorithm from assigning
large weights. Adjusting the weight decay parameter in TrainingArguments
allows you to adjust this regularization effect, influencing the model’s generaliza‐
tion capabilities.

Learning rate
This key hyperparameter determines the optimization step size. In the context
of TrainingArguments, you can specify the learning rate, influencing the conver‐
gence speed and stability of the training process. Careful tuning of the learning
rate can significantly impact the model’s generation quality.

Learning-rate scheduler type
The learning-rate scheduler dictates how the learning rate evolves during train‐
ing. Different tasks and model architectures may benefit from specific schedul‐
ing strategies. TrainingArguments provides options to define the learning-rate
scheduler type, enabling you to experiment with various schedules such as con‐
stant learning rates, cosine annealing, or others.

In this example, we modify a few parameters to showcase this flexibility:

training_args = TrainingArguments(
    "business-news-generator",
    push_to_hub=True,
    per_device_train_batch_size=8,
    weight_decay=0.1,
    lr_scheduler_type="cosine",
    learning_rate=5e-4,
    num_train_epochs=2,
    eval_strategy="steps",
    eval_steps=200,
    logging_steps=200,
)

210 | Chapter 6: Fine-Tuning Language Models



After all this setup, just as in the classification example, the final step is creating a
Trainer instance with all the components. The main differences are that we’re using a
data collator this time and that we’re using 5,000 samples:

trainer = Trainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    data_collator=data_collator,
    train_dataset=tokenized_datasets["train"].select(range(5000)),
    eval_dataset=tokenized_datasets["test"],
)

trainer.train()

Table 6-3 summarizes the training and evaluation loss during the fine-tuning process.

Table 6-3. Training results for SmolLM fine-tuning on the AG News dataset

epoch step loss grad

_norm

learning

_rate

eval

_loss

eval

_runtime

eval

_samples

_per

_second

eval_steps

_per_second

0.32 200 3.2009 2.99705 0.0004690 3.31005 18.6024 102.137 12.794

0.64 400 2.8833 2.46037 0.0003839 3.21182 18.8513 100.789 12.625

0.96 600 2.7102 2.35531 0.0002656 3.09971 18.953 100.248 12.557

1.28 800 1.722 2.55815 0.0001435 3.24014 18.7631 101.262 12.684

1.6 1000 1.5371 1.89922 4.774e-05 3.224 18.7509 101.328 12.693

1.92 1200 1.4841 2.78178 1.971e-06 3.22884 18.5468 102.444 12.832

As before, let’s push the model to the Hub:

trainer.push_to_hub()

Now we can use pipeline() and specify the task (text-generation) to load the
model and run inference:

from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model="genaibook/business-news-generator",
    device=device,
)
print(
    pipe("Q1", do_sample=True, temperature=0.1, max_new_tokens=30)[0][
        "generated_text"
    ]
)

Generating Text | 211



print(
    pipe("Wall", do_sample=True, temperature=0.1, max_new_tokens=30)[0][
        "generated_text"
    ]
)
print(
    pipe("Google", do_sample=True, temperature=0.1, max_new_tokens=30)[0][
        "generated_text"
    ]
)

('Q1: China #39;s Airline Pilots Union Says Unions May Block Planes '
 '(Update1) China #39;s Air')
('Wall Street Seen Flat After Jobless Data  NEW YORK (Reuters) - '
 'Wall Street was expected to see a  slightly lower open on Friday')
('Google IPO Imminent Google #39;s long-awaited stock sale is '
 'imminent, and the company is already considering whether to sell '
 'its')

As you can notice, the generated text follows a similar structure to the AG News
business slice. However, the generated content may not always exhibit coherence,
which is fine considering that we used a small base model that doesn’t have great
quality and used little training data. Using Mistral 7B or a very large model such as
the 70B variant of Llama 3.1 would no doubt yield much more coherent text while
preserving the same format.

Instructions
In the first part of the chapter, we discussed fine-tuning an encoder-based model for
specific text-classification tasks such as topic classification. However, this approach
requires training a new model for each distinct task. If we encounter an unseen task,
such as identifying whether a text corresponds to spam, we won’t have a pretrained
model readily available, and we’ll need to fine-tune a model for it. This leads us to
explore other techniques, so let’s briefly discuss the benefits, limitations, and uses of
different approaches:

Fine-tuning multiple models
We can pick and fine-tune a base model for each task to build a specialized
model. All the model weights are updated during fine-tuning, which implies that
if we want to solve five different tasks, we’ll end up with five model fine-tunes.

212 | Chapter 6: Fine-Tuning Language Models



6 Although originally called instruct-tuning, the community has settled on supervised fine-tuning, especially in
the context of chat models after the InstructGPT paper.

Adapters
We can freeze the base model and train a small auxiliary model called an adapter
rather than modifying all the model weights. We would still need a different
adapter for every new task, but they are significantly smaller, meaning we can
easily have multiple without adding overhead. There’s active research to manage
hundreds or even thousands of adapters in production, and they are widely pop‐
ular and used both by practitioners and in industry. You’ll learn about adapters in
the following section.

Prompting
As learned in the first chapter, we can use a robust pretrained model’s zero-shot
and few-shot capabilities to solve different tasks. With zero-shot, we write a
prompt that explains a task in detail. With a few-shot approach, we add examples
of solving the task and improving the model’s performance. The performance
of these capabilities hinges on the strength of the base model. A very strong
model such as Llama 3.1 may yield impressive zero-shot results, which is great
for tackling all kinds of tasks, such as writing those long emails or summarizing a
book chapter.

Supervised fine-tuning (SFT)
SFT, also known as instruct-tuning, is an alternative and simple way to improve
the zero-shot performance of LLMs.6 Classical instruct-tuning formulates tasks as
instructions such as, “Is the topic of this post business or sports?” or “Translate
how are you to Spanish”. This approach mainly involves constructing a dataset
of instructions for many tasks and then fine-tuning a pretrained LM with this
mixture of instruction datasets, as shown in Figure 6-3. Creating datasets for
instruct-tuning is a task of manageable complexity; for instance, we could utilize
AG News and structure the inputs and labels as instructions by building a
prompt like this:

To which of the "World", "Sports, "Business" or "Sci/Tech" categories
does the text correspond to? Answer with a single word:

Text: Wall St. Bears Claw Back Into the Black (Reuters)
Reuters - Short-sellers, Wall Street's dwindling\\band of
ultra-cynics, are seeing green again.

Instructions | 213



Figure 6-3. With instruct-tuning, we can format many labeled datasets as generation
tasks (adapted from an image in the Flan T5 paper)

By building a large enough dataset of diverse instructions, we can end up with a
general instruct-tuned model that can solve many tasks, even new ones, thanks to
cross-task generalization. This idea is the foundation behind Flan, a model that can
solve 62 tasks out of the box. This concept has been further expanded by the Flan T5
model, an open source family of instruct-tuned T5 models that can solve over 1,000
tasks. Something to note here is that the model is trained with input (instruction)
and output (answer) texts; unlike the SmolLM fine-tune example, this is a supervised
training technique. Instruct-tuning has been very popular with encoder-decoder
architectures such as T5 or BART because of the input-output structure of the
dataset. The idea has then been extended to most LLMs.

When should you use fine-tuning versus instruct-tuning versus prompt engineering?
Once again, it depends on the task, available resources, desired experimentation
speed, and more. Usually, fine-tuned models specific to a task or domain will per‐
form better. On the other hand, they won’t allow you to tackle tasks out of the
box. Instruct-tune is more versatile, but defining the dataset and structure requires
additional work. Prompt engineering is the most flexible approach for quick experi‐
mentation, as it won’t require you to train a model out of the box. Still, it requires a
more powerful base model, and there is limited control over the generation.

We won’t build an end-to-end example of instruct-tuning as it’s mostly a dataset task
rather than a modeling task, but let’s discuss some excellent papers if it’s a topic you
want to dive deeper into:

214 | Chapter 6: Fine-Tuning Language Models

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416


7 In practice, this is more nuanced. The authors provided eight randomly sampled instructions and asked the
model to generate more task instructions. The authors also removed duplicate and similar instructions.

• The authors of “Finetuned Language Models Are Zero-Shot Learners” (February•
2022) train a model called Flan using instruction tuning and outperforming
the base model’s zero-shot performance and the few-shot performance of other
models.

• After Flan, a new wave of dataset papers appeared. “Cross-Task Generalization•
via Natural Language Crowdsourcing Instructions” (March 2022) introduces
Natural Instructions, a dataset of 61 tasks with human instructions and 193,000
input-output pairs generated by mapping existing NLP datasets to a unified
schema. The premise of doing this is that humans can follow instructions to solve
novel problems by learning (in a supervised fashion) from instances of other
tasks. The authors instruct-tuned BART, an encoder-decoder model, leading to
a 19% gain in cross-task generalization compared to not using instructions. The
more tasks the model is trained on, the better it performs.

• “Multitask Prompted Training Enables Zero-Shot Task Generalization” (March•
2022) follows a similar concept of unified data schemas for different tasks. The
authors fine-tune T5 to build T0, an encoder-decoder model trained on a mul‐
titask mixture that generalizes to more tasks. One of the exciting highlights is
that the more tasks represented in the data, the higher median performance the
model achieves while not decreasing variability.

• This was later expanded with “Super-NaturalInstructions: Generalization via•
Declarative Instructions on 1600+ NLP Tasks” (October 2022), a new dataset of
over 1,600 tasks with 5 million examples. The difference in these projects is how
the datasets were generated. T0 retroactively builds instructions based on already
available task instances, while Natural Instructions had NLP researchers make
instructions and crowd workers built dataset instances.

An alternative approach is to generate outputs by using LLMs:

• Unnatural Instructions (December 2022) is a dataset of automatically generated•
examples based on seed examples and asking for a fourth. The dataset is augmen‐
ted by asking the model to rephrase each instruction.

• Self-Instruct (May 2023) bootstraps off the LMs’ own generation. The idea is•
to have a model that generates the instruction, then the input (conditioned on
the instruction), and finally the output.7 Synthetically generated datasets tend to
contain more noise. They can lead to a model that is less robust than a model
trained with less but better-curated human-generated data.

Instructions | 215

https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2212.09689
https://arxiv.org/abs/2212.10560


• LIMA (May 2023) is a much smaller English instruction dataset. Although it has•
only a thousand instances, the authors were able to fine-tune a robust Llama
model. This was achieved thanks to a strong pretrained model and by very
careful curation of training data.

These are just some of the massive explosion of instruct-tuned models. Flan-T5 is
a fine-tuned T5 model using the FLAN dataset. Alpaca is a Llama fine-tuned on an
instruction dataset generated by InstructGPT. WizardLM is a Llama instruct-tune
on the Evol-Instruct dataset. ChatGLM2 is a fine-tuned bilingual model trained on
English and Chinese instructions. We keep finding the same formula of combining a
strong base model with a diverse dataset of instruction data (that can be human or
model generated).

“Learning to Generate Task-Specific Adapters from Task Description” (June 2021)
is a different approach to improving generalization abilities. Rather than aiming
for a general network for all tasks, the authors generate task-specific parameters
called adapters. Although adapters have existed for years, their adoption has recently
become widespread in natural language and image generation. In language models
with billions of parameters, many people want to fine-tune for their domain or task.
The next section is all about adapters.

To recap this section, the two main components for instruct-tuning are a robust base
model and a high-quality instructions dataset. The quality of the instructions dataset
is, unsurprisingly, key for the model. This dataset can be either synthetically gener‐
ated (e.g., using self-instruct), manually generated, or a mix of both. Consistently,
research has shown that the more tasks represented in the training data, the better
the model is. Finally, the instruction template can impact the final performance a lot.
Existing datasets end up trading off between quantity and diversity of tasks.

A Quick Introduction to Adapters
Let’s now dive into the fourth approach: adapters. So far, we’ve explored fine-tuning
DistilBERT for text classification and SmolLM to generate text in our specific style.
In both cases, all weights of the model were modified during fine-tuning. Fine-tuning
is much more efficient than pretraining as we don’t need too much data or compute
power. However, as the trend of larger models keeps growing, doing traditional
fine-tuning becomes infeasible on consumer hardware. Additionally, if we want to
fine-tune an encoder model for different tasks, we’ll end up with multiple models,
multiplying the storage and compute requirements.

Welcome PEFT! Parameter-efficient fine-tuning, called PEFT, is a group of techniques
that enable adapting the pretrained models without fine-tuning all the model
parameters. Typically, we add a small number of extra parameters, called adapters,

216 | Chapter 6: Fine-Tuning Language Models

https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2101.00420


and then fine-tune them while freezing the original pretrained model. What effects
does this have?

Faster training and lower hardware requirements
When doing traditional fine-tuning, we update many parameters. With PEFT, we
update only the adapter, which has a small percentage of parameters compared to
the base model. Hence, training is completed much faster and can be done with
smaller GPUs.

Lower storage costs
After fine-tuning the model, we need to store only the adapter instead of the
whole model for each fine-tuning. When some models can take over 100 GB
to store, it won’t scale well if each downstream model requires saving all the
parameters again. An adapter could be 1% of the size of the original model. If
we have 100 fine-tunes of a 100 GB model, traditional fine-tuning would take
10,000 GB of storage, while PEFT would take 200 GB (the original model and
100 adapters of 1 GB each).

Comparable performance
The performance of the PEFT models tends to be comparable to the performance
of fully fine-tuned models.

No latency hit
As we’ll discuss soon, after training, the adapter can be merged into the pre‐
trained model, meaning the final size and inference latency will be the same.

This sounds too good to be true. How does it work? There are multiple PEFT
methods. Among the most popular ones are prefix tuning, prompt tuning, and
low-rank adaptation (LoRA), which we’ll focus on in this chapter. LoRA represents
the weight updates with two smaller matrices called update matrices using low-rank
decomposition. Although this can be applied to all blocks in the transformer models,
we usually apply them only to attention blocks.

PEFT is a simple library to use these techniques with transformers and diffusers. To
start, let’s discuss how to build an adapter of the SmolLM model from the previous
section. In the case of LoRA, we can control multiple things, such as these:

The rank r
This controls the size of the update matrices. A larger rank allows the adapter to
learn more-complex patterns but requires more parameters.

lora_alpha

This scales the update matrices. For example, if lora_alpha is 32 and r is 8, the
gradient updates will be scaled by 4. This is similar to using a higher learning rate
during training.

A Quick Introduction to Adapters | 217



lora_dropout

The dropout probability for LoRA layers, which can help with overfitting.

task_type

The task type, such as SEQ_CLS (sequence classification) or CAUSAL_LM (causal
language model). This will determine the adapter’s architecture.

use_dora

DoRA is a variant of LoRA that works particularly well to match the performance
of full fine-tuning. We won’t use it in this example, but it’s good to know it exists.

The update matrix in LoRA isn’t just any matrix. It’s a special kind called a low-rank
matrix. Imagine you have a huge matrix with lots of information. The idea behind
low-rank matrices is to summarize it using fewer rows and columns without losing
important information. For those interested in the (very high-level) math behind
LoRA, the update matrix is represented with a low-rank decomposition, where W0 is
the original weight and x is the input:

ℎ = W0x + ΔW = W0x + α
r
BAx

In LoRA, the update ΔW  is expressed as the product of two low-rank matrices B  and
A, with B  having fewer rows and A having fewer columns than the original weight
matrix. The scaling factor α

r
 controls the magnitude of this update. The dimensions

of B  are d × r and the dimensions of A are r × k, where d and k are the rows and
columns of the original weights, respectively.

Let’s go into code. The first step is creating a configuration of a PEFT method:

from peft import LoraConfig, get_peft_model

peft_config = LoraConfig(
    r=8, lora_alpha=32, lora_dropout=0.05, task_type="CAUSAL_LM"
)

model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
peft_model = get_peft_model(model, peft_config)
peft_model.print_trainable_parameters()

trainable params: 460,800 || all params: 134,975,808 || trainable%: 0.3414

218 | Chapter 6: Fine-Tuning Language Models



8 This example is inspired by “Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation)” by
Sebastian Raschka.

The initial model has almost 135 million parameters, but only about 460,000 would
be trained. That’s just 0.34% of the size of the original model. The idea behind PEFT
is that we can train this small adapter and get similar performance to the model that’s
300 times larger.

How does PEFT work under the hood? When you fine-tune a base model, you’re
updating all the layers. As discussed, LoRA approximates these update matrices with
two smaller ones. For example, let’s assume there’s a single update matrix with 10,000
rows and 20,000 columns. That means it contains 200 million values. Let’s assume
we do LoRA with a rank of 8. The first matrix, A, would have 10,000 rows and 8
columns, while matrix B  would have 8 rows and 20,000 columns (to ensure the same
input and output sizes). A has 80,000 values and B  has 160,000. We went from 200
million values to 240,000 values. That’s 800 times smaller! LoRA assumes that these
matrices can approximate well enough the weight update matrices.8

We talked about the r parameter. As mentioned, it controls the dimension of the
LoRA matrices, which leads to a trade-off between capabilities and overfitting. A rank
that is too high will lead to adapters that are too complex and prone to overfitting.
A rank that is too low may result in underperformance because the model won’t
be able to capture enough complexity. The second key parameter is alpha, which
controls how much the adapters impact the original model. A higher alpha gives
more importance to the adapter. Picking the values of r and alpha depends on
the problem and model. A good starting point for LLMs is to use a rank of 8 and
consistently use an alpha twice as large as the rank.

After fine-tuning, we can merge the LoRA weights back into the original model, as
shown in Figure 6-4. This means that the latency and the amount of compute needed
to run inference with a model are exactly the same with or without a merged LoRA
adapter:

weight = weight + scaling × B × A

A Quick Introduction to Adapters | 219

https://oreil.ly/fsAqC
https://oreil.ly/fsAqC


9 The default target modules depend on the model architecture.

Figure 6-4. LoRA reduces the number of trainable weights. Once trained, the LORA
weights can be merged back into the original model.

One exciting thing about LoRAs being so small is that they become very portable and
practical for production. Imagine a use case in which the users expect a chatbot or an
image generator to generate in 10 styles unknown by the initial model. Rather than
fine-tuning the initial model 10 times and loading the models ad hoc, we can load
and unload the adapter as needed. Recent techniques, such as LoRAX, allow serving
over a hundred fine-tuned adapters on a single GPU.

In some use cases, you might want to merge the adapters. Just as we updated a single
adapter, we can keep doing so with multiple:

weight = weight + scaling1 × B1 × A1
weight = weight + scaling2 × B2 × A2
weight = weight + scaling3 × B3 × A3

One last question is which parameters to update with LoRA. Using LoRA in more
blocks often leads to slightly better performance at the expense of more extensive
memory requirements during training, which may be a worthwhile trade-off and
can be done with the target_modules parameter. We can use LoRA in the attention
blocks for quick experimentation, which is usually the default of the PEFT library.9

You can also use target_modules="all-linear" to choose all the linear modules,
excluding the output blocks.

Although in this chapter we’re focusing on text-generation fine-tuning, PEFT is
widely used in other domains such as image generation (which we’ll explore in
Chapter 7), image segmentation, and more.

220 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/YCZei


10 This would be ~260 MB, which is extremely light and can even run locally in a web browser.
11 This would be 405B × 16 ~ 800 GB. This would require at least two nodes with 8 A100 GPUs each.

A Light Introduction to Quantization
PEFT allows us to fine-tune models with less compute and disk space. However, the
size of the model during inference is not decreased. If you’re doing inference of a
model with 30 billion parameters, you will still need a powerful GPU to run it. For
example, a 405B model such as Llama would require more than 8 A100 GPUs, which
are pretty powerful and expensive (each one costs over $15,000). In this section, we’ll
discuss a technique that will allow us to run the models with smaller GPUs in a way
that does not degrade their performance.

Each of those parameters has a data type or precision (see Figure 6-5). For example,
the float32 (FP32, also called full precision) type stores a float number with 32 bits.
FP32 allows the representation of a wide range of numbers with high precision, which
is important for pretraining models. In many cases, though, such a wide range is not
required. In those cases, we can use float16 (or FP16, also called half-precision).
FP16 has less precision and a lower range of numbers (the largest number possible is
64,000), which introduces new risks: a model can overflow (if a number is not within
the range of representable numbers). During inference, though, using FP16 is fine; the
risks of half-precision are just significant during training. A third data type is brain
floating-point, or bfloat16. BF16 uses 16 bits just like FP16, but allocates those bits
in a different way in order to gain more precision for smaller numbers (like those
typically found in neural network weights) while still covering the same total range
as FP32.

Let’s say we have a model of 7 billion parameters; 7 billion parameters, each being
32 bits, leads to 224 billion bits; 224 billion bits is 28 billion bytes, or ~26 GB. If
we used half-precision, we would need only 13 GB. This is a significant reduction
in memory usage, which can lead to faster inference and lower costs. Appendix B
discusses memory requirements for different models and precisions.

Test your knowledge:

• How much memory would a 135M model in half-precision take?10•
• How much memory would a 405B model in half-precision take?11•

A Light Introduction to Quantization | 221



Figure 6-5. How different precisions are represented

Using full precision for training and inference usually leads to the best results, but
it’s significantly slower. For training, people have found ways to do mixed-precision
training, which offers a significant speedup. In mixed-precision training, the weights
are maintained in full precision as reference, but the operations are done in half-
precision. The half-precision updates are used to update the full-precision weights.

The precision does not significantly impact inference, so we can load the model with
half-precision. PyTorch loads all models in full precision by default, so we need to
specify the type when loading a model by passing the torch_dtype if we want to use
float16 or bfloat16:

model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16)

Loading the 7B model with 16 bits rather than 32 bits per parameter will require
13 GB of GPU for a 7B model, which might work well for some consumer GPUs;
~7B models such as Llama, Mistral, and Gemma have become popular solutions for
consumer GPUs, but there are compelling models with even more parameters. For
example, if we want to use a 32B model in half-precision, we would need a 64 GB
GPU, far from any consumer GPU. Is there anything we can do to use these models?

Intuitively, we could think of naively reducing the range or the precision of the
numbers to reach a quarter-precision (using a single byte, 8 bits per parameter).
Unfortunately, doing so would lead to significant performance degradation. We can
achieve quarter precision thanks to 8-bit quantization. The idea behind 8-bit quanti‐
zation techniques is to map a value from one type (e.g., fp16) into an int8, which
would represent values in the [–127, 127] or [0, 256] range.

There are different 8-bit quantization techniques. Let’s explore the simple absmax
quantization. Given a vector, we first compute its maximum absolute value. We
then divide 127 (the largest possible value) by this maximum value. This leads to a

222 | Chapter 6: Fine-Tuning Language Models



quantization factor—when we multiply the vector by this factor, we guarantee that
the largest value will be 127. We can dequantize the array to retrieve the original
numbers, but some information will be lost. This is better understood by running
some code:

import numpy as np

def scaling_factor(vector):
    # Get largest value of vector
    m = np.max(np.abs(vector))

    # Return scaling factor
    return 127 / m

array = [1.2, -0.5, -4.3, 1.2, -3.1, 0.8, 2.4, 5.4, 0.3]
alpha = scaling_factor(array)
quantized_array = np.round(alpha * np.array(array)).astype(np.int8)
dequantized_array = quantized_array / alpha

print(f"Scaling factor: {alpha}")
print(f"Quantized array: {quantized_array}")
print(f"Dequantized array: {dequantized_array}")
print(f"Difference: {array - dequantized_array}")

Scaling factor: 23.518518518518515
Quantized array: [  28  -12 -101   28  -73   19   56  127    7]
('Dequantized array: [ 1.19055118 -0.51023622 -4.29448819  1.19055118 '
 '-3.10393701  0.80787402  2.38110236  5.4         0.2976378 ]')
('Difference: [ 0.00944882  0.01023622 -0.00551181  0.00944882  0.00393701 '
 '-0.00787402  0.01889764  0.          0.0023622 ]')

These differences will lead to performance degradation. Because of this, classic
quantization techniques have failed at scale with models of billions of parameters.
LLM.int8() is a technique allowing us to do 8-bit quantization without degradation.
The idea behind this technique is to extract outliers (i.e., values beyond certain
bounds) and compute matrix multiplication of those outliers in FP16 while using
int8 for the rest. This mixed-precision structure allows us to manage 99.9% of the
values in 8-bit and 1% in full or half precision, and have no performance degradation.

What’s the catch? The main goal of LLM.int8() is to reduce the requirement of
huge GPUs to run model inference. Given the additional conversion overhead, doing
inference will be slower (15–30% slower) than using fp16. One additional thing to
note is that although all the GPUs from recent years provide tensor cores for int8,
some older GPUs might not have good support for this.

The boundaries of low-precision inference are being pushed with new 4-bit and 2-bit
quantization techniques. There are even explorations of using sub-1-bit quantization.
Achieving quantization with no degradation is a research area of tremendous interest,

A Light Introduction to Quantization | 223



12 To learn more about model quantization techniques, we recommend reading the “Quantization” section of the
transformers documentation.

given the trends of models becoming larger and larger. At the beginning of this
section, we needed a 28 GB GPU to load a model with 7B parameters. We can now
load the same model with 7 GB and no quality degradation at the cost of inference
speed (but not too much).

The transformers library has integration with different quantization methods such as
AWQ, GPTQ, and 4-bit and 8-bit with bitsandbytes.12

Loading the model in 8 bits is as easy as creating a BitsAndBytesConfig and specify‐
ing load_in_8bit. You can then pass this to the model when loading it:

from transformers import BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
    "gpt2", quantization_config=quantization_config
)

Apart from quantization, we can do a couple of other things to work with very large
models. One popular inference technique is called offloading, shown in Figure 6-6. If
a model is too large to fit into your GPU, you can split it into multiple checkpoint
shards, which are automatically handled by transformers. What benefits does it have?
If a model is too large, we can load only the layers or shards that fit and offload the
other operations into your CPU RAM, which is much slower. This allows us to work
with any model size but at an inference speed cost that is not usable for many large
models. If a model is so large that it won’t fit into your CPU RAM, you can offload
the model to disk, which is even slower but should allow you to work with any model
size (as long as it fits your disk).

Figure 6-6. Model offloading

224 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/7XIKN


Putting It All Together
Let’s review PEFT and quantization:

• PEFT allows us to fine-tune models using much less compute by adding adapters•
and freezing the base model weights. This accelerates training, given only a few
weights are updatable.

• Quantization allows us to load a model by using fewer bits than those used for•
storage. This reduces the GPU requirements to load and run inference with a
model.

Why not both? Let’s imagine we train a model in 8 bits. Unfortunately, as discussed
in the previous section, having high precision is important when pretraining or
fine-tuning large models. On the other hand, PEFT freezes the base model and uses
only a small adapter, so we could aim to use lower precision here while achieving the
same performance.

QLoRA allows us to fine-tune large models with smaller GPUs. This technique is
very similar to LoRA but with quantization. First, the base model is quantized into
4 bits and frozen. Then, the LoRA adapters (the two matrices) are added and kept
in bfloat16. When fine-tuning, QLoRA uses the 4-bit storage base model and the
half-precision 16-bit model to perform computations.

Loading a model in 4 bits just requires changing to the load_in_4bit parameter
when you create the BitsAndBytesConfig. Let’s try this with Mistral 7B, which is a
solid base-model choice. Because this model is quite large compared to the previous
ones, we’ll also specify device_map="auto". It will automatically try to fill all the
space in your GPUs and then offload weights to the CPU if the model does not fit in
the GPU (which would be much slower to run, but the model would still load).

One final detail before using Mistral: this model repository is gated, which means
that the authors require explicit consent of their license terms. To use it, you have to
visit the model page in Hugging Face while being logged in to your account, read the
license, and click the button to accept it if you agree to the terms. To access the model
programmatically, as in the code snippet that follows, you have to be authenticated
with the same account. The easiest way to do it is to install the huggingface_hub
Python package (it comes with transformers) and run huggingface-cli login in a
terminal session. You’ll be asked for an access token that you can create on your
Settings page. If you are downloading the model from a Google Colab session, you
can set up the HF_TOKEN secret and give permission to your notebook to use it.

quantization_config = BitsAndBytesConfig(load_in_4bit=True)

model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-v0.3",

Putting It All Together | 225

https://oreil.ly/25rk2
https://oreil.ly/9zTFG


    quantization_config=quantization_config,
    device_map="auto",
)

BitsAndBytesConfig allows more fine-grained control of the quantization tech‐
niques by using additional arguments to change the compute type, apply nested
quantization, and more.

QLoRA is just a tool in our toolbox, not a golden bullet. It significantly reduces the
GPU requirements while maintaining the same performance, but it also increases
the training time it will take to train the model. All benefits of the PEFT section
hold, making QLoRA a popular technique in the community to quickly fine-tune 7B
models.

Let’s do a QLoRA fine-tune to make a generative model that can do simple conversa‐
tions. Let’s go over each component:

The base model
We’ll use the Mistral model. Mistral is a very high-quality 7B model. We load the
model with load_in_4bit and device_map="auto" to do 4-bit quantization.

The dataset
We’ll use the Guanaco dataset, which contains 10,000 high-quality conversations
between humans and the OpenAssistant model.

PEFT configuration
We’ll specify a LoraConfig with good initial defaults: a rank (r) of 8 and alpha
being double its value.

Training arguments
Just as before, we can configure training parameters (such as how often to
evaluate and how many epochs) as well as model hyperparameters (learning rate,
weight decay, or number of epochs).

In the previous examples, we used the TrainingArguments and Trainer, two general-
purpose tools from transformers. When fine-tuning an LLM for autoregressive tech‐
niques, the trl library’s SFTConfig and SFTTrainer classes are useful tools. They are
wrappers around the TrainingArguments and Trainer optimized for text generation.
Their features include the following:

• Easy dataset loading and processing tools. Rather than having to process the•
dataset ourselves, we can use dataset_text_field to specify the field containing
the training data. Additionally, we can use packing to concatenate multiple
sequences, which is useful for efficient batch processing.

• Support for common prompt templates for conversations and instructions out of•
the box.

226 | Chapter 6: Fine-Tuning Language Models



13 For more information, we recommend reviewing the trl documentation.

• The ability for you to directly pass any PeftConfig to the SFTTrainer to use•
PEFT techniques.

As before, we can pass the now quantized model and the dataset (we’ll pass just 300
samples for fast training). SFTTrainer already comes with useful default collators and
dataset utilities, so tokenizing and preprocessing the data is unnecessary:13

from trl import SFTConfig, SFTTrainer

dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")

peft_config = LoraConfig(
    r=8,
    lora_alpha=16,
    lora_dropout=0.05,
    task_type="CAUSAL_LM",
)

sft_config = SFTConfig(
    "fine_tune_e2e",
    push_to_hub=True,
    per_device_train_batch_size=8,
    weight_decay=0.1,
    lr_scheduler_type="cosine",
    learning_rate=5e-4,
    num_train_epochs=2,
    eval_strategy="steps",
    eval_steps=200,
    logging_steps=200,
    gradient_checkpointing=True,
    max_seq_length=512,
    # New parameters
    dataset_text_field="text",
    packing=True,
)

trainer = SFTTrainer(
    model,
    args=sft_config,
    train_dataset=dataset.select(range(300)),
    peft_config=peft_config,
)

trainer.train()

trainer.push_to_hub()

Putting It All Together | 227

https://oreil.ly/27cdE


The preceding code might take about an hour or more to run. Remember, QLoRA
leads to slower training as well.

While the model trains, it’s a good opportunity to read more about the dataset. If you
visit the dataset page, you will notice it has the following format:

### Human: Can you write a short introduction ....### Assistant: "Monopsony"
refers to a market ..### Human: Now explain it to a dog

• Each turn begins with ### Human:, followed by a space, and then the human•
input.

• The model’s response begins with ### Assistant:, followed by a space, and then•
the model’s output.

• There can be many turns.•

When you fine-tune a model for conversational tasks, it’s common to have a chat
template. All the details are essential. Adding a new line in the chat, removing a space,
or having an additional # can degrade the model’s generation. These expectations
come from the training format that was used during training. Similarly, if a model is
trained only with single-turn conversations, it will struggle to generate high-quality
multiturn generations. Knowing the prompt format is important as we’ll need to use
it to generate high-quality conversations.

Once the training is done, let’s proceed to using the model. When we pushed the
model, we just pushed the adapter. Let’s run inference with the model and the
adapter:

# We load the base model just as before
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.3")
model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-v0.3",
    torch_dtype=torch.float16,
    device_map="auto",
)

# You can load the adapter with `load_adapter`
model.load_adapter("genaibook/fine_tune_e2e")  # change with your adapter name

# Alternatively, you could just use `from_pretrained` with the adapter name and
# it will automatically take care of loading the base and adapter models.
# model = AutoModelForCausalLM.from_pretrained("genaibook/fine_tune_e2e"...

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe("### Human: Hello!### Assistant:", max_new_tokens=100)

228 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/aARln


14 We added a new line between human and assistant for readability, as well as an extra line between each turn.

The preceding code would output something like this:14

### Human: Hello
### Assistant: Hello! How can I help you?

### Human: I want to know how to make a website.
### Assistant: Sure! Here are some steps to help you get started...

Impressive, we just fine-tuned a 7B model to make it conversational without needing
a huge GPU.

As conversational models became more common, Hugging Face transformers added
a way for model creators to specify the chat_template. Thanks to this, end users
don’t need to worry so much about the prompt template and can instead focus on the
content of the conversation. For example, you can simply pass the messages to the
model, and the tokenizer will take care of formatting them automatically:

pipe = pipeline(
    "text-generation", "HuggingFaceTB/SmolLM-135M-Instruct", device=device
)
messages = [
    {
        "role": "system",
        "content": """You are a friendly chatbot who always responds
        in the style of a pirate""",
    },
    {
        "role": "user",
        "content": "How many helicopters can a human eat in one sitting?",
    },
]
print(pipe(messages, max_new_tokens=128)[0]["generated_text"][-1])

{'content': 'The number of helicopters that can be eaten in one '
            'sitting depends on the number of people in the room. If '
            'there are 10 people, then there are 10 helicopters that '
            'can be eaten in one sitting. If there are 15 people, '
            'then there are 15 helicopters that can be eaten in one '
            'sitting. If there are 20 people, then there are 20 '
            'helicopters that can be eaten in one sitting.\n'
            '\n'
            'The number of helicopters that can be eaten in one '
            'sitting depends on the number of people in the room. If '
            'there are 10 people, then there are 10 helicopters',
 'role': 'assistant'}

Putting It All Together | 229



15 This is changing recently. Some base models are adding instruction to their training data mixture, so they can
follow basic instructions out of the box.

If you just want to apply the chat template but not pass it to a model, you can use the
tokenizer.apply_chat_template() method directly:

tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M-Instruct")

chat = [
    {"role": "user", "content": "Hello, how are you?"},
    {
        "role": "assistant",
        "content": "I'm doing great. How can I help you today?",
    },
    {
        "role": "user",
        "content": "I'd like to show off how chat templating works!",
    },
]

tokenizer.apply_chat_template(chat, tokenize=False)

We can use print() to get the full prompt, but take into account that the original
string passed to the model contains characters such as \n to mark new lines:

print(tokenizer.apply_chat_template(chat, tokenize=False))

<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant
I'm doing great. How can I help you today?<|im_end|>
<|im_start|>user
I'd like to show off how chat templating works!<|im_end|>

This will work for models where the chat_template is specified in tokenizer
_config.json. To learn more about chat templates, we suggest reading the official
documentation.

A Deeper Dive into Evaluation
How can we evaluate the quality of the generated text? So far, we discussed popular
benchmarks that evaluate general knowledge and reasoning, but you might wonder
how to evaluate the quality of the generated text in a more general context. The
first thing to differentiate is the evaluation of base models versus fine-tuned or chat
models. The expectations are different for each, so we shouldn’t evaluate them in
exactly the same way. For example, we should not expect a base model to have
instruct or chat capabilities out of the box, so evaluating it on these tasks would be
unfair.15

230 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/qnikv
https://oreil.ly/qnikv


Let’s begin discussing some ways to evaluate base models:

Perplexity
Perplexity measures how well an LM predicts a given dataset. A lower perplexity
value indicates better performance and less uncertainty in generating text, sug‐
gesting that the model can predict the next word more accurately. Perplexity is
particularly relevant during the training phase of base models, as it reflects the
model’s ability to learn effective probability distributions over word sequences.

BLEU
BLEU measures the similarity between the generated text and the reference text.
It does so by calculating the proportions of n-grams in the generated text that are
also present in the reference text. Given that BLEU heavily relies on exact n-gram
matches, it can fail to capture the diversity of natural language and also lacks
semantic understanding.

ROUGE
Similar to BLEU, ROUGE measures the overlap between two texts. However,
ROUGE focuses on recall rather than precision, making it very useful for tasks
such as summarization. However, it still lacks semantic understanding and tends
to be biased toward longer outputs.

As you can see, evaluating base models is not straightforward. During training, loss
and perplexity are usually tracked with the expectation that both decrease over time.
ROUGE and BLEU are often used with datasets that have reference text. However,
both metrics rely on exact matches and overlook semantic similarities, making them
limited when evaluating more creative or diverse text generation.

A recent work, Urial, states that most of the gains we see in
instruct-tuning actually come from the base model. The authors
analyzed the token distribution shift between base and instruct-
tuned models and found very little shift in the majority of tokens.
The shifts that do occur are mostly stylistic, involving tokens like
greetings and disclaimers expected in conversational models. This
finding suggests that base models already possess much of the
knowledge needed to follow instructions, highlighting the impor‐
tance of pretraining. There’s also potential for tuning-free methods
(which don’t require fine-tuning) to achieve similar performance to
instruct-tuning, though this area is still under active research.

A Deeper Dive into Evaluation | 231

https://arxiv.org/abs/2312.01552


While these metrics provide a quantitative measure, qualitative evaluation, including
human judgment, is also crucial to gauge the overall coherence and relevance of the
generated text to the intended task. Quantitative metrics are useful for large-scale
comparisons, but they might miss subtleties like fluency, creativity, or context appro‐
priateness. This is where human evaluation shines. Balancing both quantitative and
qualitative assessments ensures a more comprehensive evaluation of text-generation
models.

For end-user generative models (such as chat models), one of the best things to do
is play with the model. There are also popular arenas, such as LMSYS, where users
interact with different anonymized models and pick the best results. The results are
then aggregated in a leaderboard that ranks the models, shown in Figure 6-7. These
arenas are better than automated leaderboards as they reflect performance closer to
real-world usage. Unfortunately, getting arena scores is expensive and, many times,
not possible for a brand-new model. In such cases, benchmarks such as MT Bench,
IFEval, EQ Bench, and AGIEval have some correlation to arena scores and hence can
be useful to get a rough idea of how well a model will perform in the real world. New
benchmarks are coming out frequently, so keeping current with the latest research is
important.

Figure 6-7. This LMSYS leaderboard

232 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/L1L7Q
https://oreil.ly/L1L7Q


Benchmarks, while valuable tools, also have their limitations. For instance,
knowledge-based benchmarks often exhibit a US-centric bias, with questions about
US history and law, as can be found in MMLU. Additionally, most of these bench‐
marks are English based, and few benchmarks are available for other languages. Some
community efforts are underway to translate these benchmarks, but progress is slow
and the translations may not be perfect. Furthermore, chat benchmarks (and often
arenas as well) tend to focus more on single-turn conversations rather than multiturn
conversations. Evaluating very long context models remains a challenge, particularly
in a chat setting, and is an area that is yet to be resolved.

The most important takeaway is to test the model on the task you want to address.
Benchmarks are useful for picking an initial base model for fine-tuning or general-
purpose chat models, but they are not a substitute for real-world testing.

Project Time: Retrieval-Augmented Generation
LLMs can use only information based on their context and the data used to train
them. If you want to ask an LLM for information about a specific topic, it will know
the answer only if it is part of its data. For example, if you try to ask Llama about new
movies, it will struggle to provide accurate information.

Retrieval-augmented generation (RAG) is a technique in which the model can access
information (e.g., paragraphs or documents) stored somewhere. With RAG, the LLM
uses both the user input and the stored information to generate a response. This
approach is powerful as it allows the model to access a large amount of information,
which makes it easier to update than to retrain the model.

Unfortunately, there might be millions of documents, so you can’t just pass all of
them to the model. To solve this, we use an embedding model (such as the sentence
transformers from Chapter 2) to encode each document into a vector, and we store
these vectors (usually into something called a vector database). We then use a nearest
neighbor search to find the documents most similar to the user input. Finally, we pass
the user input and the retrieved documents to the LLM. This approach is compelling
as it allows the model to access a large amount of information as needed.

Your goal is to build a pipeline as shown in Figure 6-8, in which:

1. The user inputs a question.1.
2. The pipeline retrieves the most similar documents to the question.2.
3. The pipeline passes the question and the retrieved documents to the LLM.3.
4. The pipeline generates a response.4.

Project Time: Retrieval-Augmented Generation | 233



Figure 6-8. A RAG pipeline

You won’t need to train any model for this task. For retrieval, we suggest using a
sentence_transformers pretrained model. Feel free to use your favorite model, e.g.,
Mistral or Llama, for generations. Notice that Problems 1 and 2 were solved in
Challenge 3 of Chapter 2, and Problems 3 and 4 were solved in this chapter. The goal
is to put all these pieces together. You can use the following functions to guide you:

def embed_documents(documents: List[str]):
    # Use a sentence transformer model to encode the documents

    # Store the documents somewhere

def retrieve_documents(query: str):
    # Use the stored documents to retrieve
    # the most similar documents to the query

def generate_response(query: str, documents: List[str]):
    # Use the LLM to generate a response

def pipeline(query: str):
    documents = retrieve_documents(query)
    response = generate_response(query, documents)
    return response

What documents to use? That’s up to you, but we recommend beginning with a
very minimal setup (i.e., pick 5–10 sentences or paragraphs, potentially crafted by
yourself), and then you can scale up to more documents.

Appendix C shows an end-to-end example of how to build a mini‐
mal RAG pipeline. We suggest trying to build the pipeline yourself
first, and then check the appendix to see a complete example.

234 | Chapter 6: Fine-Tuning Language Models



Summary
This chapter explored techniques to fine-tune LLMs. We began by discussing tradi‐
tional fine-tuning of encoder models for text classification. However, this approach
can be used for other tasks, such as answering questions from a given text and
identifying entities in a text. We then explored how to fine-tune a decoder model
for text generation. We discussed the benefits and limitations of fine-tuning versus
zero-shot or few-shot generation. We also examined how supervised fine-tuning can
enable a generative model to solve multiple tasks out of the box.

Despite the power of these techniques, scaling them to the latest, increasingly larger
models presents challenges. To address this, we explored using quantization to run
inference with large models on smaller GPUs and discussed parameter-efficient fine-
tuning (PEFT) techniques to fine-tune models with less computational and disk space
requirements. By combining these techniques, we successfully fine-tuned a 7B model
to make it conversational. With these foundations, you are equipped to fine-tune
large models for your specific tasks.

While this chapter focused heavily on model architecture and fine-tuning techniques,
it’s important to remember that the success of these models also depends on the
quality and diversity of the training data. It’s not obvious to know how much data
is needed: it depends on the model size, task complexity, and data quality. A few
hundred high-quality training samples can often be more effective than thousands of
low-quality ones.

For further readings, we suggest the following resources:

• To learn more about data, we recommend the FineWeb dataset blog post, a•
comprehensive introduction to a 15-trillion-token dataset, including an in-depth
investigation on preprocessing, explanations on how to create high-quality web
datasets, and how to create automatic annotations.

• Regarding evaluation, we suggest reading “Let’s Talk About LLM Evaluation”,•
which presents a high-level overview of model evaluation and its challenges. We
also recommend reading the Open LLM Leaderboard blog post, which gives
a comprehensive overview on community-centric model evaluation. Finally,
Eugene Yan wrote an excellent blog post on the topic.

• To learn more about LoRA, we recommend reading “Practical Tips for Finetun‐•
ing LLMs Using LoRA” as well as the QLoRA launch blog post.

Summary | 235

https://oreil.ly/ddh7Q
https://oreil.ly/lC42O
https://oreil.ly/cNFB-
https://oreil.ly/JVlgq
https://oreil.ly/fsAqC
https://oreil.ly/fsAqC
https://oreil.ly/CbB9a


• To learn more about quantization, we recommend this visual guide to quantiza‐•
tion as well as Hands-On Large Language Models by Jay Alammar and Maarten
Grootendorst (O’Reilly).

• To learn more about all the components used in a production LLM setup, we•
suggest the “Building a Generative AI Platform” blog post.

Exercises
1. What’s the difference between base and fine-tuned models? What kind of model1.

is a conversational one?
2. In which cases would you pick a base encoder model for fine-tuning?2.
3. Explain the differences between fine-tuning, instruct-tuning, and QLoRA.3.
4. Does using adapters lead to a larger model size?4.
5. How much GPU memory is needed to load a 70B model in half-precision, 8-bit5.

quantization, and 4-bit quantization?
6. Why does QLoRA lead to slower training?6.
7. In which cases do we freeze the model weights during fine-tuning?7.

You can find the solutions to these exercises and the following challenge in the book’s
GitHub repository.

Challenge
Image classification. Although this chapter has focused on fine-tuning transformer
models for NLP tasks, transformers can also be used for other modalities such as
audio and Computer Vision. The goal of this challenge is to fine-tune a transformer
model for image classification. We suggest the following:

• Use a pretrained ViT model such as google/vit-base-patch16-224-in21k.•
• Use a dataset of images and labels such as food101.•

The logic will be almost the same, with some key differences such as using an
AutoImageProcessor rather than an AutoTokenizer. We suggest looking into the
documentation to guide you through the process.

236 | Chapter 6: Fine-Tuning Language Models

https://oreil.ly/TINkA
https://oreil.ly/TINkA
https://learning.oreilly.com/library/view/hands-on-large-language/9781098150952
https://oreil.ly/l4R4h
https://oreil.ly/handsonGenAIcode
https://oreil.ly/handsonGenAIcode
https://oreil.ly/D174N
https://oreil.ly/t4r_A


References
Abdin, Marah, et al. “Phi-3 Technical Report: A Highly Capable Language Model

Locally on Your Phone.” arXiv, August 30, 2024. https://arxiv.org/abs/2404.14219.
Belkada, Younes, and Tim Dettmers. “A Gentle Introduction to 8-bit Matrix Multipli‐

cation for Transformers at Scale Using Hugging Face Transformers, Accelerate and
bitsandbytes.” Hugging Face blog, August 17, 2022. https://oreil.ly/FYVTE.

Belkada, Younes, et al. “Making LLMs Even More Accessible with bitsandbytes,
4-bit Quantization and QLoRA.” Hugging Face blog, May 24, 2023. https://oreil.ly/
CbB9a.

Chung, Hyung Won, et al. “Scaling Instruction-Finetuned Language Models.” arXiv,
October 20, 2022. https://arxiv.org/abs/2210.11416.

Dettmers, Tim, et al. “LLM.int8(): 8-bit Matrix Multiplication for Transformers at
Scale.” arXiv, August 15, 2022. https://arxiv.org/abs/2208.07339.

Dubey, Abhimanyu, et al. “The Llama 3 Herd of Models.” arXiv, August 15, 2024.
https://arxiv.org/abs/2407.21783.

Honovich, Or, et al. “Unnatural Instructions: Tuning Language Models with (Almost)
No Human Labor.” arXiv, December 19, 2022. https://arxiv.org/abs/2212.09689.

Kocetkov, Denis, et al. “The Stack: 3 TB of Permissively Licensed Source Code.” arXiv,
November 20, 2022. https://arxiv.org/abs/2211.15533.

Lester, Brian, et al. “The Power of Scale for Parameter-Efficient Prompt Tuning.”
arXiv, September 2, 2021. https://arxiv.org/abs/2104.08691.

Li, Xiang Lisa, and Percy Liang. “Prefix-Tuning: Optimizing Continuous Prompts for
Generation.” arXiv, January 1, 2021. https://arxiv.org/abs/2101.00190.

Lin, Bill Yuchen, et al. “The Unlocking Spell on Base LLMs: Rethinking Alignment via
In-Context Learning.” arXiv, December 4, 2023. https://arxiv.org/abs/2312.01552.

Liu, Xiao, et al. “GPT Understands, Too.” arXiv, October 25, 2023. https://
arxiv.org/abs/2103.10385.

Mishra, Swaroop, et al. “Cross-Task Generalization via Natural Language Crowd‐
sourcing Instructions.” arXiv, March 14, 2022. https://arxiv.org/abs/2104.08773.

Sanh, Victor, et al. “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper
and Lighter.” arXiv, March 1, 2020. https://arxiv.org/abs/1910.01108.

Sanh, Victor, et al. “Multitask Prompted Training Enables Zero-Shot Task Generaliza‐
tion.” arXiv, March 17, 2022, https://arxiv.org/abs/2110.08207.

Wang, Yizhong, et al. “Self-Instruct: Aligning Language Models with Self-Generated
Instructions.” arXiv, May 25, 2023. https://arxiv.org/abs/2212.10560.

References | 237

https://arxiv.org/abs/2404.14219
https://oreil.ly/FYVTE
https://oreil.ly/CbB9a
https://oreil.ly/CbB9a
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2212.09689
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2312.01552
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2212.10560


Wang, Yizhong, et al. “Super-NaturalInstructions: Generalization via Declarative
Instructions on 1600+ NLP Tasks.” arXiv, October 24, 2022. https://arxiv.org/abs/
2204.07705.

Wei, Jason, et al. “Finetuned Language Models Are Zero-Shot Learners.” arXiv, Febru‐
ary 8, 2022. https://arxiv.org/abs/2109.01652.

Ye, Qinyuan, and Xiang Ren. “Learning to Generate Task-Specific Adapters from Task
Description.” arXiv, June 15, 2021. https://arxiv.org/abs/2101.00420.

Zhou, Chunting, et al. “LIMA: Less Is More for Alignment.” arXiv, May 18, 2023.
https://arxiv.org/abs/2305.11206.

238 | Chapter 6: Fine-Tuning Language Models

https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2101.00420
https://arxiv.org/abs/2305.11206


CHAPTER 7

Fine-Tuning Stable Diffusion

In the previous chapter, we introduced how fine-tuning can teach LMs to write in
a particular style or to learn concepts for a specific domain. We can apply the same
principles to text-to-image models, allowing us to customize the models even with
access to a single GPU (versus the multi-GPU nodes required to pretrain a model like
Stable Diffusion).

In this chapter, we will use the base pretrained Stable Diffusion model you learned in
Chapter 5 and extend it to learn styles and concepts it might not know about, such as
the concept of “your pet” or a particular painting style. We will also learn how to give
it new capabilities, such as inpainting and giving new conditions as inputs.

Rather than writing code from scratch here, we will look into understanding and
running existing scripts created for fine-tuning the models in this section. For that,
we recommend you clone the diffusers library, as most examples will be in the
examples folder of the library:

git clone https://github.com/huggingface/diffusers.git

Full Stable Diffusion Fine-Tuning
Full model is a qualifier to fine-tuning that emerged after the development of specific
model customization techniques such as LoRA, Textual Inversion, and DreamBooth.
Those techniques do not fully fine-tune the entire model, but rather either provide
an efficient way for fine-tuning (as we learned with LoRAs for LLMs in Chapter 6)
or provide novel ways to “teach” the model new concepts. We will discuss these
techniques further in the chapter.

Before the emergence of such techniques, qualifiers such as full model didn’t exist, as
it was simply called fine-tuning. Fine-tuning in this context means further training
the diffusion model—as you learned in Chapters 3 and 4—but with the goal to steer

239



it toward specific knowledge you want to add. You could make Stable Diffusion learn
a style or subject that you can’t get via prompting or that was invented only after the
model was released (see Figure 7-1). As the qualifier full model may imply, once the
model gets fine-tuned, it will become good at the style or subject you introduced into
it, and it may become specialized in producing primarily that type of content. This
section will use a premade script to perform full fine-tuning. We are going to use
the script diffusers/examples/text_to_image/train_text_to_image.py from the diffusers
library.

Figure 7-1. Stable Diffusion fine-tuning architecture

Preparing the Dataset
The most important part of the dataset is quality. Filtering the dataset to keep only
high-quality samples and removing low-quality examples can significantly affect the
quality of your fine-tuning.

A relatively large dataset of 500+ images may be required for high-quality, full-model
fine-tuning. Although this might sound like a lot, compared to the billions of images
needed to train the entire Stable Diffusion model, having a dataset of hundreds of
images is still a tiny fraction. In the specific model-customization techniques we will
discuss further in the chapter, we will learn how to customize the model with as little
as four images.

Back to the full model fine-tuning. As we steer a text-to-image model, we must show
it a dataset containing images and the respective captions that describe those images,
just as the model was shown during its pretraining training.

240 | Chapter 7: Fine-Tuning Stable Diffusion



If you want inspiration, here are some examples:

• Renaissance paintings to make a Renaissance fine-tune•
• Pictures of buildings in your favorite architectural style to make an architectural•

model
• A set of landscape photographs to fine-tune the model for generating realistic•

landscape scenes encompassing serene forests, majestic mountains, and tranquil
lakeshores

While we encourage exploration, fine-tuning and deploying for
anything other than learning and educational purposes requires
caution. If the images you are using are the style of an artist, the
face of a person, or any material that holds intellectual property
(IP) rights, asking the author or the IP holders whether you can do
that not only is nice but could also be a legal requirement in your
jurisdiction.

In our example, we will use Hubble Telescope imagery, which is put in the public
domain by NASA six months after the images are taken. Creating a Hubble Tele‐
scope dataset and fine-tuning Stable Diffusion on Hubble imagery was pioneered
by researcher Maxwell Weinzierl of the University of Texas at Dallas, who made the
esa-hubble dataset and the Hubble Diffusion 1 and 2 models. For this example, we
aim to re-create the Hubble Diffusion 1 model by fine-tuning Stable Diffusion v1.5
with the esa-hubble dataset.

The esa-hubble dataset was created by crawling images captured by the Hubble Tele‐
scope from the European Space Agency website. Thankfully, the captions describing
the astronomical phenomena depicted in those images are also available, so both can
be saved and put into a format compatible with the datasets library that can then
be used for fine-tuning. How to collect the data (via web scraping or otherwise) is
beyond the scope of this book, but you can look into tools such as Scrapy or Beautiful
Soup for web scraping in Python. Be mindful of each website’s policy regarding
crawling or scraping.

Once you have a dataset with image-text pairs, you can load them into the datasets
library. The following section shows you how to do so. If you don’t have your image
dataset available, you can proceed with the provided esa-hubble dataset:

from datasets import load_dataset

dataset = load_dataset("imagefolder", data_dir="/path/to/folder")

Full Stable Diffusion Fine-Tuning | 241

https://oreil.ly/AtxyP
https://scrapy.org
https://oreil.ly/5a9Wr
https://oreil.ly/5a9Wr


1 For more details on creating an image dataset with the datasets library, check out the “Create an Image
Dataset” docs.

imagefolder is a special mode for load_dataset that allows the loading of a direc‐
tory of images and a metadata file containing the captions for each image. This
mode requires you to have all your images in /path/to/folder and a metadata.csv file
containing the caption corresponding to each image. So your folder can have this
structure:

folder/metadata.csv
folder/0001.png
folder/0002.png
folder/0003.png

And the metadata.csv file should look like this:

file_name,text
0001.png,This is a golden retriever playing with a ball
0002.png,A german shepherd
0003.png,One chihuahua

Once your dataset is loaded, you can push it to the Hugging Face Hub to share it with
the community with a simple command:

dataset.push_to_hub("my-hf-username/my-incredible-dataset")

And you have your dataset saved and ready to fine-tune a model!1 In some cases,
you have a perfect image dataset, but no human captions have been made for it.
In these cases, you can use image-to-text captioning models to create captions that
you can then use to fine-tune the model. Models such as BLIP-2 by Salesforce or
Florence 2 by Microsoft are widely used for this task. To learn more, you can check
the “Image-to-Text” task page. If you don’t have a dataset, don’t worry; you can use
the provided esa-hubble dataset.

Fine-Tuning the Model
To fine-tune the model, we will need a dataset, as discussed in the previous section,
as well as a training script and the weights of a pretrained model that we will be
fine-tuning. Thankfully, we can easily set this up using the diffusers library, which
provides example training scripts, and the accelerate library (for efficient training
procedures, allowing training loops of PyTorch to work on multi-GPU, TPUs, or
different precisions like BF16). This script is useful as it contains all the necessary
code to efficiently train the UNet of Stable Diffusion while still giving control to the
user with the exposed hyperparameters we will explore.

242 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/wlPc7
https://oreil.ly/wlPc7
https://oreil.ly/pHzHH
https://oreil.ly/5rPi2
https://oreil.ly/y8eOV


You will need a GPU with at least 16 GB of VRAM to perform this fine-tuning or use
services such as Google Colab Pro. The customization techniques we will learn about
in this chapter allow for training on more modest GPUs or the free version of Google
Colab.

You can follow along either by using your own dataset or by utilizing the esa-hubble
dataset by Maxwell Weinzierl to follow along with replicating Hubble Diffusion.

To begin fine-tuning the model, you’ll need to first clone the necessary training
scripts from the diffusers repository:

git clone https://github.com/huggingface/diffusers.git
cd diffusers/examples/text_to_image/

Then, use the train_text_to_image.py script. For VRAM-constrained setups, we
will use use_8bit_adam, which will require bitsandbytes and gradient_accumula
tion_steps to use larger batch sizes than would typically fit in GPU memory:

accelerate launch train_text_to_image.py \
--pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \
--dataset_name="Supermaxman/esa-hubble" \
--use_ema \
--mixed_precision="fp16" \
--resolution=512 \
--center_crop \
--random_flip \
--train_batch_size=1 \
--gradient_checkpointing \
--gradient_accumulation_steps=4 \
--use_8bit_adam \
--checkpointing_steps=1000 \
--num_train_epochs=50 \
--validation_prompts \
    "Hubble image of a colorful ringed nebula: \
A new vibrant ring-shaped nebula was imaged by the \
NASA/ESA Hubble Space Telescope." \
    "Pink-tinted plumes in the Large Magellanic Cloud: \
The aggressively pink plumes seen in this image are extremely uncommon, \
with purple-tinted currents and nebulous strands reaching out into \
the surrounding space." \
--validation_epochs 5 \
--learning_rate=1e-05 \
--output_dir="sd-hubble-model" \
--push_to_hub

Before we dig into the parameters, we suggest you run the script while you keep
reading the chapter, as the training will take some time (one to three hours depending
on your GPU). Then iterate the hyperparameters further after you’ve read through
the entire chapter.

Full Stable Diffusion Fine-Tuning | 243



Going into detail on how the train_text_to_image.py script works under the hood is
outside the scope of this book; however, the basics are the same as you learned in
“Training a Diffusion Model” on page 115, where we covered the core concepts of
training a diffusion model. The key steps involve preparing a dataset of images, defin‐
ing a noise schedule, and creating a UNet model to predict noise. The training loop
iteratively adds noise to clean images, has the model predict this noise, calculates loss
between predicted and actual noise, and updates model weights via backpropagation.
Here we are going to understand the key hyperparameters (which are the settings you
set before starting to fine-tune your model), which are still very important; we are
going to go over every setting in the preceding training script.

The most important concepts from this setup to learn are learning_rate and
num_train_epochs:

learning_rate

Denotes the amount by which the weights of your model are updated for each
training step. If you aim for a higher learning rate, the optimization process for
fine-tuning the model may not stabilize, while a too-low value may underfit,
and your model may never learn. We recommend experimenting between 1e-04
(0.0001) and 1e-06 (0.000001).

num_train_epochs

Denotes how many times your model will go through the entire dataset. It is
normal for the model to need multiple passes over the dataset to learn a concept.
Another way to set how many times the model will run the training loop is by
setting up the max_train_steps variable, where you can set the exact amount of
training steps the model will go through (even if it wraps up in the middle of an
epoch).

We will also go over the other hyperparameters in less detail:

use_ema

Denotes using the exponential moving average to train the model, which helps
stabilize the model’s training over epochs by averaging the weights.

mixed_precision

Will train the model in mixed precision. If set to FP16 as in the preceding code,
all nontrainable weights, such as the VAE, will be cast to half-precision. These
weights are used only for inference, so we don’t need them in full precision. This
will use less VRAM and speed up training.

resolution

Specifies the image resolution for training. The images will then get resized based
on parameters such as center_crop (if the images are larger than the target

244 | Chapter 7: Fine-Tuning Stable Diffusion



resolution, they will get center-cropped) and random_flip (some images will get
flipped during training for more robustness).

train_batch_size

Specifies how many examples are shown to the model simultaneously. The larger
the batch size, the larger the VRAM requirement, but the lower the training time.

gradient_checkpointing and gradient_accumulation_steps
This enables users to fit training on less VRAM. Using gradient_check
pointing trades gradient memory for some additional computation, whereas
gradient_accumulation_steps allows the use of larger effective batches by accu‐
mulating results from several training mini-batches.

use_8bit_adam

Whether or not to use 8-bit Adam Optimizer from bitsandbytes to reduce the
required GPU memory. This option makes training faster and uses less memory,
with lower precision than FP16 or FP32 precision for the gradient accumula‐
tion (summing gradients over multiple mini-batches before updating the model
weights).

checkpointing_steps

After how many training steps (batches the model saw) is a snapshot of the
model saved? Saving intermediary models is useful if you set up a high num‐
ber of num_train_epochs or max_train_steps. You may realize that the best-
performing model is trained on 30 epochs, and the full 50 got overfit.

validation_prompts

Prompts that help you check how your model is doing during training. For
every validation_epochs epoch, your model will generate the images with the
validation_prompts prompts, and you can perceptually analyze how the model
is learning.

output_dir

Local directory where the model will get saved.

push_to_hub

Whether to push your model to the Hugging Face Hub after it is trained.

The train_text_to_image.py training script has more parameters and settings. Stable
Diffusion XL can also be fine-tuned similarly. Once your model is trained and
pushed to the Hub, you can run inference on it.

Full Stable Diffusion Fine-Tuning | 245

https://oreil.ly/FrlRX
https://oreil.ly/RigW5


Inference
Once fine-tuned, the model can be used for inference just like a regular Stable
Diffusion model, as you learned in Chapter 5, but this time, the model to be
loaded is a newly trained one. In case you don’t have the compute to train the
model, here’s a model trained on the same Hubble dataset that you can try out: Super‐
maxman/hubble-diffusion-1. You can also share your model with others using the
Hugging Face platform. Here’s an output of the Hubble fine-tuned Stable Diffusion
model:

import torch
from diffusers import StableDiffusionPipeline

from genaibook.core import get_device

model_id = "Supermaxman/hubble-diffusion-1"
device = get_device()
pipe = StableDiffusionPipeline.from_pretrained(
    model_id,  # your-hf-username/your-finetuned-model
    torch_dtype=torch.float16,
).to(device)

prompt = (
    "Hubble reveals a cosmic dance of binary stars: In this stunning new image "
    "from the Hubble Space Telescope, a pair of binary stars orbit each other "
    "in a mesmerizing ballet of gravity and light. The interaction between "
    "these two stellar partners causes them to shine brighter, offering "
    "astronomers crucial insights into the mechanics of dual-star systems."
)

pipe(prompt).images[0]

246 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/7vGaM
https://oreil.ly/7vGaM


As you play with the model, you may realize that it has become very good at
generating images that could have come from the Hubble telescope (or whatever you
have fine-tuned it for), as shown by the preceding image it generated. However, it
became a specialist in that. If you prompt it to produce anything else, it will make
either some galaxy-looking output or just gibberish. This is because with fine-tuning
the full model, it experiences catastrophic forgetting, by which the entire model gets
tuned toward the direction you steered it. Also, as mentioned before, you needed
quite a few images to train it. Techniques such as DreamBooth and LoRA can help
overcome these limitations.

Full Stable Diffusion Fine-Tuning | 247



DreamBooth
DreamBooth (Figure 7-2) is a customization technique for fine-tuning Stable Dif‐
fusion that first appeared in the DreamBooth paper from Google Research. The
DreamBooth technique works by fully fine-tuning the Stable Diffusion UNet with a
few sample images that are associated with a trigger word. To preserve the previous
knowledge of the model, it also uses sample images representative of the type of
object we are fine-tuning, using a method called prior preservation loss. As we will
explain further in this chapter, if we want to fine-tune a specific dog (our dog), we’ll
use images of the dog, but also class images of other dogs.

Figure 7-2. The DreamBooth architecture flow

DreamBooth brings in three exciting advancements when compared to full-model
fine-tuning text-to-image diffusion models:

• Customizing a diffusion model by teaching it a new concept while retaining•
all the previous knowledge (avoiding the catastrophic forgetting property men‐
tioned in the previous section). As shown in Figure 7-2, DreamBooth tunes a
particular unique token or set of tokens toward a new concept being added. So,
if you want to include your dog in the model, you can train it with the sentence
a [T] dog, and every time you reference a [T] dog in your model, it will be
able to do generations with the specific “dreamboothed” dog while keeping its
characteristics. This can be achieved by utilizing the semantic knowledge the
model already possesses (e.g., it “knows” what a dog is) with a novel class-specific
prior preservation loss, allowing the model to keep that knowledge when gener‐
ating the new concept. This combination allows for the creation of the subject

248 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/hyTOd


in various scenes, poses, viewpoints, and lighting conditions that are not present
in the reference images. Without a unique token, the model can mix in the new
knowledge you are trying to train with an already existing concept associated
with that token.

• Customizing a diffusion model with only 3–5 examples. Instead of using 500+•
examples from full fine-tuning, the model can still learn and generalize well
when given a small number of examples. This happens because the model can
leverage its internal knowledge for the same class of content as the one you are
aiming to customize (for example, a [T] dog contains the word “dog,” which will
then use the internal representations of dog from the model to then customize it
to the specific dog in your image). A consequence of fewer examples is also fast
training, as the model needs to process less.

• Writing a caption for each instance image that will be uploaded for the model to•
learn from, as we did for full fine-tuning, is compatible but optional, as using a
token without captioning the images is sufficient for DreamBooth.

The DreamBooth technique in the original paper was applied to Google’s proprietary
diffusion model Imagen. However, open source community member Xavier Xiao
adapted the technique to Stable Diffusion, and since then, many community imple‐
mentations, such as the ones from TheLastBen and khoya-ss, emerged. The diffusers
library also has DreamBooth training scripts.

Overall, through trial, error, and decentralized experience, community findings sug‐
gest the following:

• Three to five images typically suffice to train a common subject or style on Stable•
Diffusion.

• Using 8 to 20 images is more effective for training unique styles or rare objects.•
• Prior preservation loss is beneficial for faces but may not be needed for other•

subjects or styles.
• Fine-tuning both the model’s text encoder and UNet can produce good•

outcomes.
• Most of these insights have been incorporated into the community’s training•

scripts.

We will use the script diffusers/examples/dreambooth/train_dreambooth.py from the
diffusers library.

DreamBooth | 249



DreamBooth is not the first customization technique with the same
goals. Textual Inversion, based on the seminal paper “An Image Is
Worth One Word”, showcases how to train a new embedding for
the text encoder of the Stable Diffusion model to contain a new
subject. The technique is still relevant, as the embeddings trained
can be small (just a few kilobytes). However, there’s a size versus
quality trade-off, and DreamBooth’s quality has made this techni‐
que dominant in the text-to-image community. Experiments with
techniques combining Textual Inversion and DreamBooth (named
Pivotal Tuning) have also shown good results. With DreamBooth,
you need to find a unique trigger word. However, by utilizing Tex‐
tual Inversion, we can create trigger words as new tokens, leading
to better injection of new concepts.

Preparing the Dataset
In general, 5 to 20 examples tend to be enough to train a new object or face. For
styles, if the model is struggling to learn with that range, adding more examples can
help. As captioning the images is not required for DreamBooth, all you have to do is
have your training images in a folder of your preference that you can reference using
the training code. For example, you can download the pictures of your pet.

For this example, we will train a model on the face of one of the authors. If you would
like to follow along, feel free to train a model on your own face (or maybe a pet).

Prior Preservation
With DreamBooth, you can optionally take advantage of a prior preservation class.
This works by providing a prior preservation loss during training so that the model
understands that it is generating elements of that same class. For example, when
teaching the model your own face, having a collection of face images will help the
model “understand” that the class you are trying to train are faces, so even though
you provide few examples, it will be grounded on images of faces. If the model
already has knowledge about the class you are going to create, you can even generate
the prior images yourself (and the training code has a flag allowing you to do that) or
upload them to a specific folder.

To enable prior preservation, you can configure a couple of parameters in the train‐
ing script:

with_prior_preservation

Whether to use prior preservation. If set to True, the model will generate images
based on the class_prompt and num_class_images parameters. If you provide
a class_data_dir folder, images inside that folder will be used as class images
instead.

250 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/DdSxi
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2208.01618


class_prompt

When using prior preservation, the prompt describing the class of the gener‐
ated sample images that will be used for training–for example, the face of a
Brazilian man. It does not include the trigger word.

num_class_images

The number of class images to be generated. If you provide a class_data_dir
folder, images inside that folder will be used as class images instead. If the folder
has fewer images than num_class_images, the remaining ones will be generated
by the class_prompt.

DreamBoothing the Model
Just as with fine-tuning the entire model, the most important variables are
learning_rate and num_train_epochs. A low learning rate followed by slowly incre‐
menting the number of train epochs or steps can provide a good starting point to
land on good quality. Another exploration route is fixing the number of train epochs
or steps and increasing the learning rate. Both strategies can be combined to find the
optimal hyperparameters.

Let’s go over some parameters that are exclusive to DreamBooth:

instance_prompt

The prompt from which the model will attempt to learn the concept. Try to find
a rare token or combination for your subject name and surround it with context,
for example, in the style of mybtfuart, a photo of plstps, or an sckpto
toy. The rare combination will be the trigger word for the particular instance you
are fine-tuning.

train_text_encoder

Whether to train the text encoder as well. It can yield good results but consumes
more VRAM. The reason training the text encoder together with the UNet may
be useful is that you are also injecting knowledge about this new concept into the
textual interpretation of the prompt.

with_prior_preservation

Whether to utilize prior preservation loss.

class_prompt or class_data_dir
A prompt to generate the class images for prior preservation. They will be taken
from class_data_dir, if supplied. Otherwise, a few will be generated by the
model by using the prompt specified in class_prompt.

DreamBooth | 251



prior_loss_weight

Controls the influence of the prior preservation loss on the model.

Let’s use the train_dreambooth.py script to train a model on the face of one of the
authors, as shown in Figure 7-3. If you want to follow along, feel free to train a model
on your own face.

Figure 7-3. Set of face images of “Apolinário Passos” for DreamBooth training

accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5"  \
--instance_data_dir="my-pictures" \
--instance_prompt="a photo of plstps" \ 
--resolution=512 \
--train_batch_size=1 \
--with_prior_preservation \
--class_prompt="an ultra realistic portrait of a man" \ 
--gradient_accumulation_steps=1 \
--train_text_encoder \
--learning_rate=5e-6 \
--num_train_epochs=100 \
--output_dir="myself-model" \
--push_to_hub

plstps is a unique token for the model to learn the concept on.

Here you can add a generic description of what you are training.

Once the model is trained, you can use it to generate new images. Let’s explore how to
do that.

Inference
Even though the overall structure of the model is preserved and only the new token
based on the instance_prompt is altered, the new DreamBooth model is still a full
Stable Diffusion weight. Therefore, it can be loaded as such for inference:

model_id = "your-hf-profile/your-custom-dreambooth-model"
pipe = StableDiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
).to(device)

252 | Chapter 7: Fine-Tuning Stable Diffusion



prompt = "a photo of plstps speaking on a microphone"  
pipe(prompt).images[0]

Insert your instance prompt and some custom customization.

Figure 7-4 shows some results of the model trained on the face of one of the authors.

Figure 7-4. Images generated by the model “DreamBoothed” on Apolinário’s face

Training LoRAs
We have an issue with full fine-tuning and DreamBooth: once we finish tuning
our model, we end up with new weights as large as the original Stable Diffusion
model. This scenario is not ideal for sharing, hosting locally, stacking models, serving
models in the cloud, and other downstream applications. For this, LoRA can be used
(Figure 7-5), just as we did in Chapter 6 for LLMs.

Figure 7-5. LoRA architecture flow

Training LoRAs | 253



2 LoRA trainer scripts such as Kohya, TheLastBen, and Advanced LoRA Trainer built upon the diffusers scripts
offer a lot more experimental functionality. Those are advanced but very well regarded by the community.

As discussed in Chapter 6, LoRAs allow freezing of the pretrained model weights and
inject rank decomposition matrices, significantly reducing the number of parameters
to be trained. The LoRA-trained ranks can also be shared as artifacts that can be
merged into the model without additional inference latency.

Sounds great! But we are in the fine-tuning diffusion chapter, and the original LoRAs
were focused on transformers. This is where Simo Ryu’s Stable Diffusion LoRA Git‐
Hub repository comes into the picture. Realizing that LoRA rankings can be attached
to the Stable Diffusion UNet and text encoder in the same way they can be added to
transformers LLMs has now unlocked the power of LoRAs for diffusion models.

Once again, the diffusers library comes to the rescue, incorporating a script for LoRA
training for both full-model fine-tuning and DreamBooth fine-tuning. Training a
LoRA weight with diffusers is virtually the same as full model fine-tuning or Dream‐
Booth fine-tuning with diffusers, with some key differences:

• The dataset format is the same as the one used for full-model fine-tuning and•
DreamBooth fine-tuning.

• The training scripts are different, although the hyperparameters are the•
same. We will use examples/text_to_image/train_text_to_image_lora.py and
examples/dreambooth/train_dreambooth_lora.py from the diffusers library.2

• For inference, the process involves loading the base model into the pipeline and•
then adding the LoRA adapter. This approach is convenient because it allows you
to quickly load and switch between different LoRA adapters while keeping the
same base model. For example, you can use a pretrained LoRA fine-tune shared
by another user (you can find pretrained options on the Hugging Face Hub). The
steps are: select the base model (the one the LoRA will be attached to), load the
diffusers pipeline, load the LoRA weights into the model, and optionally fuse the
LoRA weights for better efficiency and speed.

Let’s see how to load a LoRA fine-tuned model and perform inference with it. The
main differences are determining the base model and loading the LoRA weights into
the model:

from diffusers import DiffusionPipeline
from huggingface_hub import model_info

254 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/xIYPj
https://oreil.ly/Yc1N5
https://oreil.ly/xsXSE
https://oreil.ly/L3hEc
https://oreil.ly/L3hEc
https://oreil.ly/3M8sI


# We'll use a classic hand drawn cartoon style
lora_model_id = "alvdansen/littletinies"

# Determine the base model
# This information is frequently in the model card
# It's "stabilityai/stable-diffusion-xl-base-1.0" in this case
info = model_info(lora_model_id)
base_model_id = info.card_data.base_model

# Load the base model
pipe = DiffusionPipeline.from_pretrained(
    base_model_id, torch_dtype=torch.float16
)
pipe = pipe.to(device)

# Add the LoRA to the model
pipe.load_lora_weights(lora_model_id)

# Merge the LoRA with the base model
pipe.fuse_lora()

image = pipe(
    "A llama drinking boba tea", num_inference_steps=25, guidance_scale=7.5
).images[0]
image

Training LoRAs | 255



Giving Stable Diffusion New Capabilities
Fine-tuning to teach the model new styles or subjects is incredible. But what if
we could use fine-tuning to give Stable Diffusion more capabilities than usual? By
fine-tuning with some special techniques, we can provide the model the capability of
inpainting or include additional conditionings.

Inpainting
Inpainting involves masking a specific area of an image that you would like to replace
with something else. It is similar to image to image, with the difference that noise is
added only to the masked area: the model denoises only that area, aiming to change
or remove that item from the image while keeping the rest of the image intact.

It is possible to give inpainting capability to a pretrained text-to-image diffusion
model by including additional input channels for the UNet. In the case of the
inpainting specialist Stable Diffusion v1 model, they added ~400K steps by having
five zeroed-out input channels for the UNet, with four for the encoded masked image
and one for the mask itself. During training, synthetic masks are generated, with 25%
of everything masked. As you have the ground truth of the image behind the mask,
the model learns how to fill in the masked areas based on the prompt, becoming a
powerful image-editing tool.

With more advanced models, such as Stable Diffusion XL, some inpainting capabili‐
ties come out of the box without further tuning, which made some people question
whether a specialized fine-tuned model could improve this capability. However,
SDXL specialist inpainting models were released with some extra capabilities, show‐
ing the potential for this technique even in bigger and more advanced models. While
this technique is not accessible for training on domestic hardware, requiring full
fine-tuning for hundreds of thousands of steps, the fine-tuned models are accessible
and available to everyone. In the next chapter, we are going to explore inpainting in
more depth (with code).

Additional Inputs for Special Conditionings
Just as new input channels can be added to the UNet for the model to learn how to
perform inpainting, other conditionings can be added. One example of this applica‐
tion was the Stable Diffusion 2 Depth, a model resumed from stable-diffusion-2-
base and fine-tuned for 200K steps with an extra input channel that processes both
the user prompt and an image that contains a monocular depth (distance relative to
the camera) prediction produced by MiDaS. An example can be seen in Figure 7-6.

256 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/2XgEc
https://oreil.ly/aZoEo
https://oreil.ly/5BbI3


Figure 7-6. Inference of Stable Diffusion 2 fine-tuned with MiDaS depth conditioning

While this technique works well, fine-tuning the base model for hundreds or thou‐
sands of steps to get new conditioning limited this process to only a few companies
and labs. However, techniques that append adaptors on top of the model, such as
ControlNets, ControLoras, and T2I adaptors, emerged to make this process more
efficient for training and inference; we are going to explore more of those creative
text-to-image applications in the next chapter.

Project Time: Train an SDXL DreamBooth LoRA by Yourself
Fine-tuning is a great way to bring more knowledge to text-to-image diffusion mod‐
els, and as you learned in this chapter, DreamBooth allows for fine-tuning to happen
with just a few example images, and LoRA training allows for small models and lower
GPU usage when compared to fine-tuning the entire model. For this project, you will
fine-tune a DreamBooth LoRA. After learning the basics of Dreambooth and LoRA,
you can use diffusers more advanced scripts. If you do not own a GPU with at least
16 GB of VRAM, we recommend using Google Colab or Hugging Face Spaces for this
project.

Your goal is to be able to prompt a new, not-yet-existing object or style into Stable
Diffusion and have the model successfully generate a new image with it. This involves
two steps:

1. Dataset creation:1.
a. Find an object or style you want to include in the model. It could be a uniquea.

item you own (e.g., a wooden cat toy) or a style of furniture/paintings/rugs
that you have in your house.

b. Take a couple of pictures of these objects from different angles, in differentb.
backgrounds; around 3–8 pictures should suffice.

Project Time: Train an SDXL DreamBooth LoRA by Yourself | 257

https://oreil.ly/xsXSE
https://oreil.ly/3ZIpB
https://oreil.ly/cgEOc


c. Write a descriptive caption for each of the images, and use a unique token toc.
describe your object (e.g., cttoy), for example:
• A photo of the front of a cttoy, white background•
• A photo of the side of a cttoy, flowerpot in the background•

d. Either upload the dataset to the Hugging Face Datasets Hub or keep it in ad.
local folder.

2. Model training:2.
a. Open any training script that suits you (based on the recommended ones ora.

others you may find).
b. Point the image folder to either the local folder or the Hugging Face Datasetb.

you’ve created.
c. Run the training. As explained earlier, you can experiment with learningc.

_rate, batch_size, and other hyperparameters until you are satisfied with
your LoRA. Refer to “Training LoRAs” on page 253 to learn how to load your
trained LoRA into Stable Diffusion to test it out.

d. With your validation_prompts, you can check how the samples are beingd.
generated during training. Once the model is trained, you can load it with
load_lora_weights to understand how your model was trained.

Summary
As training a big text-to-image model from scratch requires a significant amount
of computing resources, fine-tuning steps in to enable single-GPU operations to
customize preexisting models to produce what you need. In this chapter, you learned
how fine-tuning diffusion models can lead to expanding knowledge and customiza‐
tion of the model for particular needs while retaining its overall knowledge. You
learned how to do a full fine-tune, use DreamBooth for specific characters or styles,
and use LoRA for efficiency. You also learned that fine-tuning diffusion models can
give them new capabilities. Overall, fine-tuning is a powerful tool.

This chapter explored techniques for fine-tuning the Stable Diffusion model to teach
it styles, subjects, or capabilities. Starting with full-model fine-tuning, you learned
how to alter the model’s behavior to generate images in a desired style or subject.
We then moved to techniques like DreamBooth and LoRA, which allow for customi‐
zation with fewer examples and less risk of catastrophic forgetting.

We also discussed the potential of fine-tuning to add new capabilities to the model,
such as inpainting and special conditionings, expanding the utility of Stable Diffusion
beyond its original configuration.

258 | Chapter 7: Fine-Tuning Stable Diffusion

https://oreil.ly/RV4Bh


For additional readings, we suggest reviewing the following:

• “How to Fine Tune Stable Diffusion: How We Made the Text-to-Pokemon Model•
at Lambda”

• “How I Train a LoRA: m3lt Style Training Overview”•
• “Create an Infinite Icon Library by Fine-Tuning Stable Diffusion”•
• Advanced diffusion training guide•
• The DreamBooth paper itself•
• A lengthy introduction to LoRAs on diffusion models•

Exercises
1. Explain the main differences between full-model fine-tuning and DreamBooth.1.
2. What are the advantages of using LoRA over full-model fine-tuning in terms of2.

computational resources and model adaptability?
3. Why is it important to utilize a unique token when doing DreamBooth training?3.
4. Besides teaching new concepts, fine-tuning can also add new capabilities to the4.

model. Cite two capabilities that the model can learn by applying fine-tuning
techniques.

5. Discuss how the choice of hyperparameters affects the outcome of fine-tuning a5.
diffusion model.

6. Describe the potential risks of fine-tuning text-to-image models on biased6.
datasets.

You can find the solutions to these exercises and the following challenge in the book’s
GitHub repository.

Challenge
LoRA versus full fine-tuning comparison. Train a DreamBooth model with LoRA and
full fine-tuning and compare the results. Try to modify the rank hyperparameter for
the LoRA to see how much it affects the results.

Challenge | 259

https://oreil.ly/-Vpcl
https://oreil.ly/-Vpcl
https://oreil.ly/oDuD6
https://oreil.ly/dEZPO
https://oreil.ly/xsXSE
https://arxiv.org/abs/2208.12242
https://oreil.ly/zQZ-M
https://oreil.ly/handsonGenAIcode
https://oreil.ly/handsonGenAIcode


References
Gal, Rinon, et al. “An Image Is Worth One Word: Personalizing Text-to-Image

Generation Using Textual Inversion.” arXiv, August 2, 2022. https://arxiv.org/abs/
2208.01618.

Hu, Edward J., et al. “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv,
October 16, 2021. https://arxiv.org/abs/2106.09685.

Podell, Dustin, et al. “SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis.” arXiv, July 4, 2023. http://arxiv.org/abs/2307.01952.

Ruiz, Nataniel, et al. “DreamBooth: Fine Tuning Text-to-Image Diffusion Mod‐
els for Subject-Driven Generation.” arXiv, March 15, 2023. https://arxiv.org/abs/
2208.12242.

Ryu, Simo. LoRA GitHub repository. 2022. https://oreil.ly/L3hEc.

260 | Chapter 7: Fine-Tuning Stable Diffusion

https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://oreil.ly/L3hEc


PART III

Going Further





CHAPTER 8

Creative Applications of
Text-to-Image Models

This chapter presents creative applications that leverage text-to-image models and
increase their capabilities beyond just using text to control generation. We will start
with the most basic applications and then move on to more advanced ones.

Image to Image
Even though generative text-to-image diffusion models like Stable Diffusion can pro‐
duce images from text from a fully noised image, as you learned in Chapters 4 and 5,
it is possible to start from an already existing image instead of a fully noised image.
That is, add some noise to an initial image and have the model modify it partially by
denoising it. This process is called image to image, as an image is transformed into
another image based on how much it is noised and based on the text prompt.

With the diffusers library, we can load an image-to-image pipeline to load the class.
As an example, let’s explore how to use SDXL for this task. Here are the main
differences:

• We use the StableDiffusionXLImg2ImgPipeline rather than the usual Stable•
DiffusionXLPipeline.

• We pass both a prompt and an initial image to the pipeline.•

We can use either the stabilityai/stable-diffusion-xl-base-1.0 or the
stabilityai/stable-diffusion-xl-refiner-1.0 model for applying our image-to-
image refinements. The base model is recommended when you want to stylize your
image or create new context from what is there. The refiner model, which specializes

263

https://oreil.ly/kUqBY
https://oreil.ly/WqqsR


in working out fine details for the images, can be good if you want to refine or add
details without many creative transformations to the image:

import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
from genaibook.core import get_device

device = get_device()

# Load the pipeline
img2img_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
)

Then, we can move the pipeline to our device (usually cuda for GPU). As
some examples might require too much GPU, an alternative is to use img2img
_pipeline.enable_model_cpu_offload(), which moves submodules to the GPU as
needed. This will make inference slower but will allow you to run the model on a
smaller GPU:

# Move the pipeline to the device
# Alternatively, img2img_pipeline.enable_model_cpu_offload()
img2img_pipeline.to(device)

Now that we have our pipeline, let’s try an example:

from genaibook.core import SampleURL, load_image, image_grid

# Load the image
url = SampleURL.ToyAstronauts
init_image = load_image(url)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"

# Pass the prompt and the image through the pipeline
image = img2img_pipeline(prompt, image=init_image, strength=0.5).images[0]
image_grid([init_image, image], rows=1, cols=2)

Our StableDiffusionXLImg2ImgPipeline takes in the same inputs as the normal
Stable Diffusion pipeline we’ve used so far, plus two extra parameters:

init_image

The original image that we are going to modify.

strength

How much noise we will add to the image. A strength of 0 will return the exact
same image as no noise has been added. A strength of 1 will fully noise the
image, ignoring it entirely and behaving like the regular text-to-image pipeline.

264 | Chapter 8: Creative Applications of Text-to-Image Models



Check out the experiment in Figure 8-1, in which we took the same image and
applied strengths between 0 and 1.

Figure 8-1. Varying the denoising strength of an image from 0.1 to 1.0 with an image-to-
image model

Inpainting
Inpainting is the process of filling in missing parts of an image based on the sur‐
rounding context. As we discussed in the previous chapter, it is possible to either use
a model as it is for inpainting or fine-tune a text-to-image diffusion model to improve
its inpainting capabilities.

Before we dive into the specifics of text-to-image diffusion models for inpainting,
it’s worth noting the distinction between this text-to-image generative approach and
classical image-processing techniques for inpainting. Traditional methods typically
rely on analyzing the surrounding pixels and using various algorithms to fill in the
masked area based on local image statistics or patch-based sampling. While these
classical approaches can be effective for simple backgrounds or small areas, they often
struggle with complex textures or semantic understanding of the image content. In
contrast, inpainting using text-to-image diffusion models offers several advantages.
These models can understand and generate content based on both visual and seman‐
tic context, allowing for more coherent and creative results. However, ML methods
generally require more computational resources.

Inpainting | 265



Let’s showcase how to perform inpainting and what creative applications it can
leverage. As before, we can use a pipeline, StableDiffusionXLInpaintPipeline, to
handle this:

from diffusers import StableDiffusionXLInpaintPipeline

# Load the pipeline
inpaint_pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)

img_url = SampleURL.DogBenchImage
mask_url = SampleURL.DogBenchMask

init_image = load_image(img_url).convert("RGB").resize((1024, 1024))
mask_image = load_image(mask_url).convert("RGB").resize((1024, 1024))

# Pass images and prompt through the pipeline
prompt = "A majestic tiger sitting on a bench"
image = inpaint_pipeline(
    prompt=prompt,
    image=init_image,
    mask_image=mask_image,
    num_inference_steps=50,
    strength=0.80,
    width=init_image.size[0],
    heigth=init_image.size[1],
).images[0]

In the resulting grid, the left panel denotes the source image, the middle panel
denotes the mask image, and the right panel denotes the output image:

image_grid([init_image, mask_image, image], rows=1, cols=3)

266 | Chapter 8: Creative Applications of Text-to-Image Models



Some of the most important parameters that the StableDiffusionXLInpaint

Pipeline takes in are as follows:

init_image

The image that will be inpainted.

mask_image

A binary color mask image. Black indicates the parts of the image that should
remain the same, and white indicates where the image will be replaced with the
generation.

strength

The amount of noise we will add to the mask. Just like the strength for image to
image, but applying only to the masked area. A strength of 0 will return the same
image as if no noise has been added. A strength of 1 will fully noise the masked
area, which is not the best scenario for smooth blending. Experiment with 0.6
to 0.8.

Apart from the base diffusion models, some models, such as diffusers/stable-
diffusion-xl-inpainting, are fine-tuned to be specialized in inpainting. These
models were fine-tuned explicitly for this task, which allows us to use a higher
strength during inference.

Prompt Weighting and Image Editing
As you learned in Chapter 4, diffusion models use transformer-like attention mecha‐
nisms that allow the model to focus flexibly on the most relevant parts of the input.
Specifically, cross-attention is used to condition transformers inside the UNet layers
with a text prompt to condition image generation.

However, you want more control over the generated image in some cases. For exam‐
ple, we may want to do the following:

• Modify how much weight is given to each word of a prompt by modifying the•
scale of the text embeddings.

• Combine multiple prompts to generate an image.•
• Change the generations while keeping the structure for image editing.•

For that purpose, “Prompt-to-Prompt Image Editing with Cross Attention Control”
introduced the idea of modifying the diffusion with the goal of obtaining steerability
by modifying and controlling the cross-attention. That paper also has a nonofficial
implementation for diffusers.

Prompt Weighting and Image Editing | 267

https://arxiv.org/abs/2208.01626
https://oreil.ly/wXPr_
https://oreil.ly/wXPr_


1 Pooling involves converting the token embeddings into a single fixed-length embedding that reflects the
entire sequence, just as we did with sentence embeddings.

Besides Prompt-to-Prompt, other techniques for editing generated images, such
as Attend-and-Excite and Semantic Guidance emerged, both with official diffusers
implementations. In this chapter, we will dive deeper into Semantic Guidance editing,
as it balances steerability and edit quality.

Prompt Weighting and Merging
The compel prompt enhancement library implements key aspects of prompt weight‐
ing and merging and is easy to use with the diffusers library. It works by pre-
processing the strings and enhancing the corresponding embeddings in the CLIP
embedding space. As Stable Diffusion XL utilizes two text encoders, it adds complex‐
ity into the prompt weighting process. This complexity arises because the weighting
must be harmonized between both encoders, and the output from the second text
encoder needs to be pooled.1 The compel library abstracts this complexity away.

Two simple ways to control the prompt are as follows:

• Increasing the weight with + signs after the word to give it more prominence in•
the image, modifying the scale of the text embedding. You can also decrease the
weight with -. By adding multiple + and - signs, you can increase or decrease the
weight of a word even more. Although we can reduce the prominence of a word,
it may not always completely remove the concept from the image.

• Merge two prompts (by having them within brackets) and then specify the•
weight for each prompt.

Let’s write some code. As usual, we begin by loading a pipeline:

from diffusers import DiffusionPipeline

pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)

268 | Chapter 8: Creative Applications of Text-to-Image Models

https://arxiv.org/abs/2301.13826
https://arxiv.org/abs/2301.12247
https://oreil.ly/eVTag


We’ll now initialize a Compel class, which requires providing the tokenizer and text
encoders from the diffusion model. The class also requires specifying which text
embedding will be pooled:

from compel import Compel, ReturnedEmbeddingsType

# Use the penultimate CLIP layer as it is more expressive
embeddings_type = (
    ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED
)
compel = Compel(
    tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2],
    text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
    returned_embeddings_type=embeddings_type,
    requires_pooled=[False, True],
)

Finally, we can generate images with different compel-enhanced prompts:

from genaibook.core import image_grid

# Prepare the prompts
prompts = []
prompts.append("a humanoid robot eating pasta")
prompts.append(
    "a humanoid+++ robot eating pasta"
)  # make its humanoid characteristics a bit more pronounced
prompts.append(
    '["a humanoid robot eating pasta", "a van gogh painting"].and(0.8, 0.2)'
)  # make it van gogh!

images = []
for prompt in prompts:
    # Use the same seed across generations
    generator = torch.Generator(device=device).manual_seed(1)

    # The compel library returns both the conditioning vectors
    # and the pooled prompt embeds
    conditioning, pooled = compel(prompt)

    # We pass the conditioning and pooled prompt embeds to the pipeline
    image = pipeline(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        num_inference_steps=30,
        generator=generator,
    ).images[0]
    images.append(image)
image_grid(images, rows=1, cols=3)

Prompt Weighting and Image Editing | 269



The + is equivalent to multiplying the prompt weight by 1.1, and the - is equivalent
to a 0.9 multiplication. Besides using + and -, we can also weigh the tokens as follows:
a robot eating (pasta)1.2. For more references in the compel library, check out its
official reference guide.

Editing Diffusion Images with Semantic Guidance
As mentioned, a few image-editing techniques exist for diffusion-generated images;
while cross-attention control with Prompt-to-Prompt is a popular way to provide
edits, Semantic Guidance (SEGA) allows for more fine-grained controls and precise
edits.

SEGA operates by manipulating the model’s noise estimates at each step of the reverse
diffusion process. This dynamic noise adjustment allows SEGA to perform semantic
edits in the latent space based on textual descriptions. By dynamically adjusting the
predicted noise, SEGA ensures that the modification is steered toward the semantic
direction derived from the text embeddings. The method calculates gradients of the
text embeddings relative to the latent space, effectively guiding the image generation
or modification toward the desired semantic outcomes. This process is achieved
without needing to retrain or modify the original architecture of the model, allowing
for dynamic and directed changes based solely on textual input.

Let’s begin by showcasing the SemanticStableDiffusionPipeline to generate an
image of a photo of the face of a man:

from diffusers import SemanticStableDiffusionPipeline

semantic_pipeline = SemanticStableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, variant="fp16"
).to(device)

generator = torch.Generator(device=device).manual_seed(100)
out = semantic_pipeline(
    prompt="a photo of the face of a man",
    negative_prompt="low quality, deformed",

270 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/DES_7


    generator=generator,
)
out.images[0]

As you’ll see in the forthcoming examples, SEGA contains a few important parame‐
ters for its editing capabilities:

edit_guidance_scale

How strongly the model should follow the edits

edit_warmup_steps

How many denoising steps the model should start with before applying SEGA

edit_threshold

What percentage of the pixels of the original image should be preserved

reverse_editing_direction

Whether the edit should include (False) or remove (True) the concept

Let’s guide the prompt in the direction of an editing_prompt to make the man smile,
by adding "smiling, smile":

generator = torch.Generator(device=device).manual_seed(100)
out = semantic_pipeline(
    prompt="a photo of the face of a man",
    negative_prompt="low quality, deformed",
    editing_prompt="smiling, smile",
    edit_guidance_scale=4,

Prompt Weighting and Image Editing | 271



    edit_warmup_steps=10,
    edit_threshold=0.99,
    edit_momentum_scale=0.3,
    edit_mom_beta=0.6,
    reverse_editing_direction=False,
    generator=generator,
)
out.images[0]

Let’s do another edit, this time to make the man wear glasses:

generator = torch.Generator(device=device).manual_seed(100)
out = semantic_pipeline(
    prompt="a photo of the face of a man",
    negative_prompt="low quality, deformed",
    editing_prompt="glasses, wearing glasses",
    reverse_editing_direction=False,
    edit_warmup_steps=10,
    edit_guidance_scale=4,
    edit_threshold=0.99,
    edit_momentum_scale=0.3,
    edit_mom_beta=0.6,
    generator=generator,
)
out.images[0]

272 | Chapter 8: Creative Applications of Text-to-Image Models



Finally, let’s do multiple edits simultaneously, as shown in the following code snippet.
The only difference is that editing_prompt is now a list of prompts, and the key
parameters (edit_warmup_steps and so on) must also be lists:

generator = torch.Generator(device=device).manual_seed(100)
out = semantic_pipeline(
    prompt="a photo of the face of a man",
    negative_prompt="low quality, deformed",
    editing_prompt=[
        "smiling, smile",
        "glasses, wearing glasses",
    ],
    reverse_editing_direction=[False, False],
    edit_warmup_steps=[10, 10],
    edit_guidance_scale=[6, 6],
    edit_threshold=[0.99, 0.99],
    edit_momentum_scale=0.3,
    edit_mom_beta=0.6,
    generator=generator,
)
out.images[0]

Prompt Weighting and Image Editing | 273



Real Image Editing via Inversion
Inversion is a technique for bringing a real image back into the latent space of a
pretrained generative model. The technique showed promising results with GANs
and was successfully implemented in guided diffusion models.

This allows us to answer a question you may have raised when learning about SEGA:
“But what if we want to edit images from the real world instead?” One alternative is
to use the image-to-image approach presented earlier. However, it can provide only
very limited edits and does not always produce the expected results, as the results can
change dramatically without much control. To solve that, we can combine a diffusion
image-editing technique (such as Prompt-to-Prompt or SEGA) with an inversion
technique to give more fine-grained editing.

The inversion process for guided diffusion models uses an inversed scheduler of a
denoiser. The first denoiser with inversion introduced was DDIM Inverse, which can
predict samples from previous timesteps into the latent space by performing DDIM
sampling in reverse order (starting with the real image and gradually adding noise to
it). Then, when you denoise it, you have your original image as expected. By itself,
this is not super-interesting; you’ve just used noisy latents to reconstruct an image
you already had. However, inversion can become powerful if your goal is to provide
edits to the image.

274 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/-W5z9


The most naive way to edit via inversion is to do the following:

1. Obtain the DDIM Inverse of a real prompt and a description (e.g., A photo of a1.
horse in the field).

2. Modify the prompt to your target image (e.g., A photo of a zebra in the2.
field).

3. Reconstruct the image with the modified prompt.3.

The results are shown in Figure 8-2.

Figure 8-2. Editing with the DDIM Inversion technique (adapted from an image in “An
Edit Friendly DDPM Noise Space: Inversion and Manipulations”)

While these results are interesting, they aren’t ideal for real image editing. More-
advanced techniques, such as better inversions with DDPM Inversion with an edit-
friendly noise space, can provide better reconstructions but still cannot offer the
broadest range of edits.

We can combine an inversion technique with editing techniques to provide a wide
range of edits for real images. For example, “Null-text Inversion for Editing Real
Images Using Guided Diffusion Models” and LEDITS++ utilize Prompt-to-Prompt
and SEGA, respectively.

These techniques leverage the editing techniques you learned before, but instead of
providing the edits in the latent space with an image that would be generated via a
prompt, it happens in the latent space of the reconstruction of the image once it is
inverted. Here, you will learn how to provide real-world image edits with LEDITS++,
leveraging the already learned SEGA with inversion.

Real Image Editing via Inversion | 275

https://arxiv.org/abs/2304.06140
https://arxiv.org/abs/2304.06140
https://oreil.ly/XBqjc
https://oreil.ly/XBqjc
https://arxiv.org/abs/2211.09794
https://arxiv.org/abs/2211.09794
https://arxiv.org/abs/2311.16711


Editing with LEDITS++
LEDITS++ combines two techniques you just learned: SEGA and inversion. It further
implements a technique to ground your edit with the cross-attention and noise masks
produced by the model. This combination allows us to edit real images with the same
parameters we learned for SEGA.

LEDITS++ works as follows:

1. Apply inversion to bring the image we are interested in into a format the model1.
can manipulate.

2. We decide our editing list with editing_prompt and the editing direction2.
(whether to add or remove such concept) with reverse_editing_direction.

3. We apply the same edit_guidance_scale and edit_threshold we learned in3.
SEGA for our edits.

Let’s use the LEDITS++ pipeline:

from diffusers import LEditsPPPipelineStableDiffusion

# Load the model as usual
pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    variant="fp16"
)
pipe.to(device)

image = load_image(SampleURL.ManInGlasses).convert("RGB")

# Invert the image, gradually adding noise to it so
# it can be denoised with modified directions,
# effectively providing an edit
pipe.invert(image=image, num_inversion_steps=50, skip=0.2)

# Edit the image with an editing prompt
edited_image = pipe(
    editing_prompt=["glasses"],
    # tell the model to remove the glasses by editing the direction
    reverse_editing_direction=[True],
    edit_guidance_scale=[1.5],
    edit_threshold=[0.95],
).images[0]

image_grid([image, edited_image], rows=1, cols=2)

276 | Chapter 8: Creative Applications of Text-to-Image Models



Real Image Editing via Instruction Fine-Tuning
Another way to provide real image editing for diffusion models is to fine-tune the
model exclusively for this task. This approach was pioneered by the InstructPix2Pix
paper. Training requires a dataset of edit instruction pairs containing the original
image, edit instructions, and the edited image.

The Stable Diffusion model is then appended with additional input channels to
the first convolutional layer, allowing it to take in an image input. The model is
trained with the same text-conditioning mechanism intended for captions in the
original Stable Diffusion model, modified to take an edit instruction as its prompt
(Figure 8-3).

Further trained and improved InstructPix2Pix models emerged after the publication
of the original paper. The most prominent is CosXL Edit by Stability AI, trained on a
variant Stable Diffusion XL to perform high-quality edits.

Real Image Editing via Inversion | 277

https://oreil.ly/qKxf1
https://oreil.ly/qKxf1
https://oreil.ly/See_0


Figure 8-3. Edits with the InstructPix2Pix technique

The CosXL repository is gated, so visit the model page in Hugging Face, read the
license, and click the button to accept it if you agree to the terms. Run huggingface-
cli login in a terminal session to log in. You’ll be asked for an access token that you
can create in your Settings page. If you are downloading the model from a Google
Colab session, you can set up a HF_TOKEN secret or environment variable and give
permission to your notebook to use it. Here’s an example edit done with CosXL:

from diffusers import (
    EDMEulerScheduler,
    StableDiffusionXLInstructPix2PixPipeline,
)
from huggingface_hub import hf_hub_download

edit_file = hf_hub_download(
    repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"
)

278 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/See_0
https://oreil.ly/9zTFG


# from_single_file loads a diffusion model from a single diffusers file
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
    edit_file, num_in_channels=8, is_cosxl_edit=True, torch_dtype=torch.float16
)

# The model was trained so that the EDMEulerScheduler
# is the correct noise scheduler for denoising
pipe_edit.scheduler = EDMEulerScheduler(
    sigma_min=0.002,
    sigma_max=120.0,
    sigma_data=1.0,
    prediction_type="v_prediction",
    sigma_schedule="exponential",
)
pipe_edit.to(device)

prompt = "make it a cloudy day"
image = load_image(SampleURL.Mountain)
edited_image = pipe_edit(
    prompt=prompt, image=image, num_inference_steps=20
).images[0]

image_grid([image, edited_image], rows=1, cols=2)

ControlNet
ControlNet is a model for controlling image diffusion models by conditioning the
model with additional conditions besides the text-prompt condition. The Control‐
Net models are trained over a trainable copy of the original model. Unlike direct
fine-tuning, ControlNet preserves the original model completely and injects all
the new conditions into this trainable copy of the original model. This allows for

ControlNet | 279



preserving the model’s capabilities—even if your ControlNet is trained with relatively
few samples.

The ControlNet models are trained to take in various conditions, two of which you
see in Figure 8-4: canny edges and human pose (OpenPose). Besides those, there are
also depth maps, scribble, segmentation, lineart, and more. Check out all the
official Stable Diffusion v1-5 ControlNets on Hugging Face and check out Hugging
Face Models for community-trained ones.

Figure 8-4. ControlNet examples with image input, canny edges, and open pose condi‐
tionings, and the generated output

ControlNet’s versatility and efficiency make it a powerful tool for various image-
generation and image-manipulation tasks. By allowing fine-grained control over the
output while maintaining the original model’s capabilities, ControlNet opens up
new possibilities for creative and practical applications, as shown in Figure 8-5. For
instance, it can be used in fields such as fashion design to visualize clothing on differ‐
ent body poses, in architecture to generate building designs based on rough sketches,
or in film preproduction to quickly create storyboards from simple line drawings.
The ability to use different types of control inputs, such as edges, pose estimations, or
depth maps, provides creatives and developers with a flexible framework to guide the
image-generation process according to their specific needs.

280 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/q7-Rq
https://oreil.ly/7JC4H


Figure 8-5. Duck ControlNet Canny example

We’ll use an auxiliary library, controlnet_aux, to preprocess the input images into the
desired condition format for the official pretrained ControlNet models. The diffusers
library authors have also trained ControlNets for Stable Diffusion XL. You can find
them in this Hugging Face collection.

First, we load the main model with StableDiffusionXLControlNetPipeline. This
pipeline also expects a ControlNelModel parameter with the model that provides
additional conditioning to the UNet during denoising:

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline

controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
)

controlnet_pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    variant="fp16",
)
controlnet_pipeline.enable_model_cpu_offload()  # Optional, saves VRAM
controlnet_pipeline.to(device)

ControlNet | 281

https://oreil.ly/Vjrv-
https://oreil.ly/tYZu_


Then, we can use controlnet_aux to preprocess the image into the desired condition
format. Here, we are using the MidasDetector preprocessing as it is a depth estima‐
tion model. This model takes in an image input and outputs an estimated depth
map, which is exactly what we need to feed in for our diffusers/controlnet-depth-
sdxl-1.0 model:

from controlnet_aux import MidasDetector
from PIL import Image

original_image = load_image(SampleURL.WomanSpeaking)
original_image = original_image.resize((1024, 1024))

# loads the MiDAS depth detector model
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")

# Apply MiDAS depth detection
processed_image_midas = midas(original_image).resize(
    (1024, 1024), Image.BICUBIC
)

Finally, we can pass the prompt and the processed image to the pipeline to generate
the new image. The controlnet_conditioning_scale will dictate how strongly the
condition will influence the final result:

image = controlnet_pipeline(
    "A colorful, ultra-realistic masked super hero singing a song",
    image=processed_image_midas,
    controlnet_conditioning_scale=0.4,
    num_inference_steps=30,
).images[0]
image_grid([original_image, processed_image_midas, image], rows=1, cols=3)

While training your ControlNets is outside the scope of this book, if you are interes‐
ted in this subject, we recommend you check the Hugging Face blog’s “Train Your
ControlNet with diffusers”.

282 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/TYKXl
https://oreil.ly/TYKXl


Image Prompting and Image Variations
Text prompts are great, but sometimes more is needed to express our intent to the
model. Prompting diffusion models with images allows us to amplify our input range
to the visual realm.

Image Variations
To flourish our creativity, we sometimes need to look at something similar but differ‐
ent. That is the purpose of image variations: to take a given image and reinterpret
it, providing a familiar yet different image generation. Let’s explore two approaches—
using CLIP image embeddings and IP-Adapter:

Using CLIP image embeddings
As you learned in Chapter 5, Stable Diffusion uses CLIP as its text encoder. Apart
from the text encoder, CLIP can also be used to produce image embeddings.
Some diffusion models were trained in such a way that they could use image
embeddings as input to generate new image variations. That’s the case of Karlo
and Kandinsky. For Stable Diffusion, this does not work out of the box. However,
it can be achieved with fine-tuning. Stable Diffusion Image Variations is a fine-
tuned Stable Diffusion v1-5 model that accepts CLIP Image Embeddings as its
inputs. You can try its demo on Hugging Face.

Using IP-Adapter
Another approach that does not require fine-tuning the model is to utilize pre‐
trained IP-Adapters (Image Prompt Adapters). These adapters allow prompting
with images, allowing for image variations and a wide range of other use cases
of image prompting, such as style transfer, subject identity preservation, and
structure control.

As shown in Figure 8-6, IP-Adapter comprises two components: an encoder that
extracts features from the image and decoupled cross-attention modules that get
attached to the pretrained Stable Diffusion UNet.

Image Prompting and Image Variations | 283

https://oreil.ly/WGWNf
https://oreil.ly/_NsIS
https://oreil.ly/ZVOmp
https://oreil.ly/fA2sU


Figure 8-6. The IP-Adapter architecture (adapted from an image in the IP-Adapter
paper)

Using IP-Adapter requires minimal changes over the base SDXL pipeline:

• Use load_ip_adapter() to load the IP-Adapter model.•
• Specify the IP-Adapter scale with set_ip_adapter_scale().•

And that’s it! To do image variations with IP-Adapter, we can provide the reference
image and an empty prompt, and their results are as follows:

from diffusers import StableDiffusionXLPipeline

sdxl_base_pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
)
sdxl_base_pipeline.to(device)

# We load the IP-Adapter too
sdxl_base_pipeline.load_ip_adapter(
    "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin"
)

# We can set the scale of how strong we
# want our IP-Adapter to impact our overall result
sdxl_base_pipeline.set_ip_adapter_scale(0.8)

284 | Chapter 8: Creative Applications of Text-to-Image Models

https://arxiv.org/abs/2308.06721
https://arxiv.org/abs/2308.06721


image = load_image(SampleURL.ItemsVariation)
original_image = image.resize((1024, 1024))

# Create the image variation
generator = torch.Generator(device=device).manual_seed(1)
variation_image = sdxl_base_pipeline(
    prompt="",
    ip_adapter_image=original_image,
    num_inference_steps=25,
    generator=generator,
).images

image_grid([original_image, variation_image[0]], rows=1, cols=2)

With IP-Adapter, we generated a reinterpretation of our image (you can see that it
removed the whipped cream—we can live with that!), which is really cool and enables
fun use cases. However, IP-Adapter is way more powerful than what we’ve done so
far. Image prompting can allow the combination of IP-Adapter with text prompting
and the other controls you learned in this chapter.

Image Prompting
IP-Adapter allows for more than just generating image variations. It allows you to
utilize an image as one of the prompts, which enables you to apply techniques like
style transfer and all the other techniques you learned in this chapter, adding an
image prompt and a text prompt.

Image Prompting and Image Variations | 285



Style transfer
While IP-Adapter works great out of the box with style transfer, the researchers
behind the InstantStyle paper realized that if IP-Adapter is applied to only certain
blocks of the UNet of the Stable Diffusion model, it can affect exclusively the image
style. The idea is that we can pass a prompt and a style image to the model, and the
model will generate an image that follows the prompt but with the style of the style
image. In this example, we are going to apply the style of the work by the Brazilian
painter Tarsila do Amaral, “O Mamoeiro.” The main differences are the scale of the
IP-Adapter and the input prompt, which is no longer empty:

# We load the model and the IP-Adapter, just as before
pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to(device)

# Load the IP-Adapter into the model
pipeline.load_ip_adapter(
    "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin"
)

# We are applying the IP-Adapter only to the mid block,
# which is where it should be mapped to the style in SDXL
scale = {"up": {"block_0": [0.0, 1.0, 0.0]}}
pipeline.set_ip_adapter_scale(scale)

image = load_image(SampleURL.Mamoeiro)
original_image = image.resize((1024, 1024))

# Run inference to generate the stylized image
generator = torch.Generator(device=device).manual_seed(0)
variation_image = pipeline(
    prompt="a cat inside of a box",
    ip_adapter_image=original_image,
    num_inference_steps=25,
    generator=generator,
).images

image_grid([original_image, variation_image[0]], rows=1, cols=2)

286 | Chapter 8: Creative Applications of Text-to-Image Models

https://arxiv.org/abs/2404.02733


Additional controls
Now, to wrap up this chapter, we can show how the multiple techniques we learn all
composite together. We will add our IP-Adapter “O Mamoeiro” style to our previous
example of the ControlNet masked singer:

controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16
)

# Load the ControlNet pipeline
controlnet_pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    variant="fp16",
)
controlnet_pipeline.to(device)

# Load the IP-Adapter
controlnet_pipeline.load_ip_adapter(
    "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin"
)
# We are applying the IP-Adapter only to the mid block,
# which is where it should be mapped to the style in SDXL
scale = {
    "up": {"block_0": [0.0, 1.0, 0.0]},
}
controlnet_pipeline.set_ip_adapter_scale(scale)

# Load the original image
original_image = load_image(SampleURL.WomanSpeaking)
original_image = original_image.resize((1024, 1024))

Image Prompting and Image Variations | 287



# Load the style image
style_image = load_image(SampleURL.Mamoeiro)
style_image = style_image.resize((1024, 1024))

# Apply the MiDAS depth estimation
processed_image_midas = midas(original_image).resize(
    (1024, 1024), Image.BICUBIC
)

image = controlnet_pipeline(
    "A masked super hero singing a song",
    image=processed_image_midas,
    ip_adapter_image=style_image,
    controlnet_conditioning_scale=0.5,
).images[0]
image_grid(
    [original_image, style_image, processed_image_midas, image], rows=1, cols=4
)

Project Time: Your Creative Canvas
Now it’s your creative canvas 🎨. In this chapter, we’ve provided multiple mechanisms
for creative applications and expression. It’s your time to exercise that now; your chal‐
lenge in this chapter is to try to combine at least two techniques we presented here in
your own creative ways—similarly to how we have created the masked superhero in
the “memoirs” style. Here are some ideas to guide your creative journey:

• Use ControlNet canny edges to reimagine your living space with an IP-Adapter•
style applied from a reference you hold dear.

• Draw a rough sketch of a city on a piece of paper, take a picture, and apply image•
to image to turn that city into a Solarpunk utopia. Now use the style of this
Solarpunk utopia generated by your sketch as a reference and create buildings,
transportation systems, and inhabitants in your new city.

• Or find other ways to explore this latent space!•

288 | Chapter 8: Creative Applications of Text-to-Image Models



Summary
In this chapter, we explored various creative applications that provide more control
and extend the capabilities of text-to-image models with fine-grained controllability,
increasing the range of inputs these models can take. As these techniques are com‐
posable and compatible with one another, we allow for complex creative pipelines
and artistic processes to go beyond just inputting text and getting an image as an
output. Using a combination of image transformations, variations, style, or structural
image references, as well as finer-grained prompt control, artists and creative profes‐
sionals can incorporate machine learning workflows into their toolbox.

However, going beyond generating images, especially when bringing real images
into the latent space of the model, brings in new challenges. Key ethical concerns
include misinformation, deception, and ownership. Making image editing accessible
to everyone (and not only Adobe Photoshop specialists, for example) creates new
opportunities and challenges, such as image manipulations that can be used to spread
misinformation and deceive people with deepfakes or nonexistent content. The ques‐
tion of ownership is also key: artistic styles can be remixed, but the legal and ethical
boundaries for when such remix is done fairly is still an open question. Mitigation
strategies such as watermarking already exist in libraries like diffusers; however, there
are more discussions to be held at a societal level about how to handle these new
abilities ML gives us.

Nonetheless, the creative potential of these new models is an exciting development.
When used ethically and responsibly, they will certainly empower creatives with
tooling that goes beyond imagination.

For further readings, we suggest the following resources:

• “IP-Adapter: All You Need to Know”•
• “Train Your ControlNet with diffusers”•
• Diffusers inpainting guide•
• “Instruction-tuning Stable Diffusion with InstructPix2Pix”•
• The papers in “References” on page 290•

Exercises
1. Explain how inpainting differs from image-to-image transformation and provide1.

an example of a practical application.
2. How can prompt weighting help overcome the limitations of the diffusion2.

models?
3. What are the key differences between Prompt-to-Prompt editing and SEGA?3.

Exercises | 289

https://oreil.ly/yYsJo
https://oreil.ly/TYKXl
https://oreil.ly/UQpgR
https://oreil.ly/8lx5x


4. How does ControlNet enhance the capabilities of diffusion models? Give exam‐4.
ples of conditions that can be used with ControlNet.

5. What is “Inversion” in the context of text-to-image models, and what does it5.
allow us to do?

You can find the solutions to these exercises in the book’s GitHub repository.

References
Brack, Manuel, et al. “LEDITS++: Limitless Image Editing Using Text-to-Image Mod‐

els.” arXiv, November 30, 2023. http://arxiv.org/abs/2311.16711.
Brack, Manuel, et al. “SEGA: Instructing Text-to-Image Models Using Semantic

Guidance.” arXiv, January 29, 2023. http://arxiv.org/abs/2301.12247.
Brooks, Tim, et al. “InstructPix2Pix: Learning to Follow Image Editing Instructions.”

arXiv, November 17, 2022. https://arxiv.org/abs/2211.09800.
Chefer, Hila, et al. “Attend-and-Excite: Attention-Based Semantic Guidance for

Text-to-Image Diffusion Models.” arXiv, January 31, 2023. http://arxiv.org/abs/
2301.13826.

Hertz, Amir, et al. “Prompt-to-Prompt Image Editing with Cross Attention Control.”
arXiv, August 2, 2022. http://arxiv.org/abs/2208.01626.

Mokady, Ron, et al. “Null-Text Inversion for Editing Real Images Using Guided
Diffusion Models.” arXiv, November 17, 2022. http://arxiv.org/abs/2211.09794.

Podell, Dustin, et al. “SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis.” arXiv, July 4, 2023. http://arxiv.org/abs/2307.01952.

Wang, Haofan, et al. “InstantStyle: Free Lunch Towards Style-Preserving in Text-to-
Image Generation.” arXiv, April 4, 2024. http://arxiv.org/abs/2404.02733.

Ye, Hu, et al. “IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image
Diffusion Models.” arXiv, August 14, 2023. http://arxiv.org/abs/2308.06721.

Zhang, Lvmin, et al. “Adding Conditional Control to Text-to-Image Diffusion Mod‐
els.” arXiv, February 11, 2023. https://arxiv.org/abs/2302.05543.

290 | Chapter 8: Creative Applications of Text-to-Image Models

https://oreil.ly/handsonGenAIcode
http://arxiv.org/abs/2311.16711
http://arxiv.org/abs/2301.12247
https://arxiv.org/abs/2211.09800
http://arxiv.org/abs/2301.13826
http://arxiv.org/abs/2301.13826
http://arxiv.org/abs/2208.01626
http://arxiv.org/abs/2211.09794
http://arxiv.org/abs/2307.01952
http://arxiv.org/abs/2404.02733
http://arxiv.org/abs/2308.06721
https://arxiv.org/abs/2302.05543


CHAPTER 9

Generating Audio

In Chapter 1, we caught a glimpse of the potential of audio generation with a
transformers pipeline based on the MusicGen model by Meta. This chapter dives into
generative audio, using both diffusion and transformer-based techniques, which will
introduce a new set of exciting challenges and applications. Imagine if you could
remove all background noise in real time during a call, if you could get high-quality
transcriptions and summaries of conferences, or if a singer could regenerate their
songs in other languages. You could even generate a theme of Mozart and Billie
Eilish’s compositions that gets a mariachi-infused twist. Well, that’s the field’s trajec‐
tory, exciting times ahead.

What kinds of things can we do with ML and audio? The two most common tasks are
transcribing speech to text (automatic speech recognition, or ASR) and generating
speech from text (text to speech). In ASR, a model receives as input audio of someone
(or multiple people) speaking and outputs the corresponding text. For some models,
the output captures additional information, such as which person is speaking or the
times when somebody said something. ASR systems are widely used, from virtual
speech assistants to caption generators. Thanks to many open-access models made
available to the public in recent years, there has been exciting research on multilin‐
gualism and running the models directly on edge.

In text to speech (TTS), a model generates synthetic and, hopefully, realistic speech.
As with ASR, in TTS there has been considerable interest in running models on-
device as well as multilingualism. TTS also presents its own set of challenges, such
as generating audios with multiple speakers, making the voices sound more natural,
and bringing intonation, pauses, emotion markers, pitch control, accent, and other
characteristics in the generations.

291



Although TTS and ASR are the most popular tasks, we can do a plethora of other
things with ML and audio (some of which are shown in Figure 9-1):

Text to audio
Text to speech can be generalized to text to audio (TTA), where, based on a
prompt, a model can generate melodies, sound effects, and songs.

Voice cloning
A person’s voice, including tone, pitch, and prosody, is preserved to generate new
sounds.

Audio classification
The model classifies a provided audio. Typical examples are command recogni‐
tion and speaker identification.

Voice enhancement
The model removes noise from the audio and cleans the voice to be clearer.

Audio translation
The model receives audio with a source language X and outputs audio with a
target language Y.

Speaker diarization
The model identifies the speaker at a specific time.

Figure 9-1. Examples of audio tasks

Audio-related tasks are challenging for multiple reasons. First, working with a raw
audio signal is more complex and less intuitive than working with text. For many
applications, audio models are expected to perform in real time or on-device, which
can constrain model size and inference speed. For example, current diffusion models
would be too slow if you wanted to use them for interactive translation. Finally,
evaluating generative audio models can be challenging. How do you measure whether
the quality of a song generated by a model is good?

292 | Chapter 9: Generating Audio



We can use multiple tools and hundreds of open-access models and datasets for these
tasks. Common Voice, a popular crowd-sourced dataset by the Mozilla Foundation,
contains over 2,000 hours of audio files and their corresponding text in over a hun‐
dred languages. Many other popular audio datasets, such as LibriSpeech, VoxPopuli,
and GigaSpeech, are also available, each with its own domain and use cases. Just as
there are many open source datasets, we can also use many open-access models. This
chapter will explore transformer-based models such as Meta’s Wav2Vec2, OpenAI
Whisper, Microsoft SpeechT5, and Suno Bark. We’ll also explore exciting diffusion
models that can generate songs, such as Stable Diffusion (but for songs), Dance Dif‐
fusion, and AudioLDM. Although jumping into another modality might be daunting,
many of the tools we’ve collected in our generative journey are about to be used.

Audio Data
To get started, we’ll show how audio data is structured and how to use it. We’ll
explore the LibriSpeech dataset, which contains over 1,000 hours of books read out
loud and is useful for training and evaluating speech-recognition systems. One of the
first challenges with audio datasets is that they tend to be large, so loading all the data
simultaneously might not be feasible. Audio datasets can quickly spawn terabytes of
data and not fit in a hard drive.

We can use load_dataset_builder() to get a better overview of the dataset structure
without loading all the data:

from datasets import load_dataset_builder

ds_builder = load_dataset_builder(
    "openslr/librispeech_asr", trust_remote_code=True
)
ds_builder.info.splits

{'test.clean': SplitInfo(name='test.clean',
                         num_bytes=368449831,
                         num_examples=2620,
                         shard_lengths=None,
                         dataset_name=None),
 'test.other': SplitInfo(name='test.other',
                         num_bytes=353231518,
                         num_examples=2939,
                         shard_lengths=None,
                         dataset_name=None),
 'train.clean.100': SplitInfo(name='train.clean.100',
                              num_bytes=6627791685,
                              num_examples=28539,
                              shard_lengths=None,
                              dataset_name=None),
 'train.clean.360': SplitInfo(name='train.clean.360',
                              num_bytes=23927767570,

Audio Data | 293

https://oreil.ly/AHfTa
https://oreil.ly/Rw7-f


                              num_examples=104014,
                              shard_lengths=None,
                              dataset_name=None),
 'train.other.500': SplitInfo(name='train.other.500',
                              num_bytes=31852502880,
                              num_examples=148688,
                              shard_lengths=None,
                              dataset_name=None),
 'validation.clean': SplitInfo(name='validation.clean',
                               num_bytes=359505691,
                               num_examples=2703,
                               shard_lengths=None,
                               dataset_name=None),
 'validation.other': SplitInfo(name='validation.other',
                               num_bytes=337213112,
                               num_examples=2864,
                               shard_lengths=None,
                               dataset_name=None)}

The dataset authors found that the size of the corpus made it impractical to work with
it, so they decided to split it into subsets of 100, 360, and 500 hours. It makes sense
as, after all, just the training data is over 60 GB. Without loading all this data, we can
start looking into the features by using .info.features:

ds_builder.info.features

{'file': Value(dtype='string', id=None),
 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None),
 'text': Value(dtype='string', id=None),
 'speaker_id': Value(dtype='int64', id=None),
 'chapter_id': Value(dtype='int64', id=None),
 'id': Value(dtype='string', id=None)}

The most valuable features are text and audio. We have all the data needed to
build an initial speech-recognition pipeline with these two features: the audio and its
corresponding transcription. Under the hood, each feature has a type. The text type,
for example, is a Value feature, which contains the data type string. The audio type
is an Audio feature, which contains the audio information. Just like images, audio
can be represented with multiple channels. The mono attribute indicates whether
the audio is mono (single channel, which provides a uniform sound experience) or
stereo (two channels, which provide a sense of directionality). We’ll discuss what
sampling_rate and decode mean in the next section.

Given that the dataset is so large, we need to find ways to work with it efficiently.
Rather than downloading the whole dataset and then using it, you can use streaming
mode to load one example at a time, hence not consuming disk space and being
able to use samples from the dataset as they are downloaded. When using streaming
mode with the datasets library, we get an IterableDataset, which can be used as any
Python iterator. Let’s look at the first example of the 100-hour split:

294 | Chapter 9: Generating Audio



from datasets import load_dataset

ds = load_dataset(
    "openslr/librispeech_asr",
    split="train.clean.360",
    streaming=True,
)
sample = next(iter(ds))
sample

{'audio': {'array': array([ 9.15527344e-05, 4.57763672e-04, 5.18798828e-04, ...,
       -4.57763672e-04, -5.49316406e-04, -4.88281250e-04]),
           'path': '1487-133273-0000.flac',
           'sampling_rate': 16000},
 'chapter_id': 133273,
 'file': '1487-133273-0000.flac',
 'id': '1487-133273-0000',
 'speaker_id': 1487,
 'text': 'THE SECOND IN IMPORTANCE IS AS FOLLOWS SOVEREIGNTY MAY BE '
         'DEFINED TO BE THE RIGHT OF MAKING LAWS IN FRANCE THE KING '
         'REALLY EXERCISES A PORTION OF THE SOVEREIGN POWER SINCE '
         'THE LAWS HAVE NO WEIGHT'}

The sample provides us with audio and the corresponding text. The audio entry is
the feature type that contains the following:

• An array with the decoded audio data. Recall that the audio feature had decode•
set to True, which means that the audio is already decoded for you. Otherwise,
the audio contains the bytes, and you need to decode it yourself.

• The path to the downloaded audio file.•
• The data sampling_rate, which is essential for loading the audio properly.•

If these concepts sound foreign to you, no worries. This is the perfect opportunity to
learn what exactly audio is.

Audio is an infinite set of values over time. Computers can’t work with continuous
data, so we need to process the audio signal and have a digital discrete (finite)
representation. To achieve this, we take many snapshots at a given second. That’s
called the sampling rate. For example, for this audio sample, we can find in the audio
feature that the sampling rate is 16,000 (with the unit being Hertz). This means that
16,000 samples are taken in a given second. If we have an audio file of a minute, that’s
almost a million values—no wonder audio datasets are huge. Figure 9-2 shows an
audio waveform sampled using a sampling rate of 6.

Audio Data | 295



Figure 9-2. In this waveform sampled using a sampling rate of 6, discretization happens
at intervals 1/6th of a second apart

The sampling rate is an essential parameter: when working with audio ML, we need
to ensure that all the audio samples have the same sampling rate. The models are
pretrained with data sampled at a specific rate, so when fine-tuning or running
inference, you need to ensure to use the same sampling rate. Although some of the
most popular audio datasets have a sampling rate of 16,000, this is only sometimes
the case, so you must resample the data in the preprocessing stage:

array = sample["audio"]["array"]
sampling_rate = sample["audio"]["sampling_rate"]

# Let's get the first 5 seconds
array = array[: sampling_rate * 5]
print(f"Number of samples: {len(array)}. Values: {array}")

('Number of samples: 80000. Values: [9.15527344e-05 4.57763672e-04 '
 '5.18798828e-04 ... 7.05261230e-02\n'
 ' 5.92041016e-02 6.50329590e-02]')

Of course, we cannot print an audio file in the book, but you can run some code
to listen to the audio. We can use the IPython.display.Audio() function for this.
Alternatively, you can visit the official interactive demo to listen to all the audio
samples of the chapter. Let’s listen to the first audio sample in the 100-hour split:

import IPython.display as ipd

ipd.Audio(data=array, rate=sampling_rate)

296 | Chapter 9: Generating Audio

https://oreil.ly/a5Yn_


1 To be precise, vibrations produce changes in the air (or other mediums), which lead to sound. These
vibrations cause a sound wave that leads to pressure changes in our ears.

You might be wondering about decode and mono in the Audio
feature. The decode attribute specifies whether the data should
be decoded (returned as an array of floats) or not (returned as a
bytes). The mono attribute specifies whether the audio is mono (one
channel) or if there are multiple channels. We’ll explore examples
of these in the next sections.

Waveforms
We just saw that we use a digital discrete representation of audio to be able to work
with it. Under the hood, an audio is just an array of values. These arrays contain the
information needed to train models for many tasks, so it’s worth investing time in
understanding the array before going into the applications.

What does the array represent? Each value in the array represents the amplitude,
which describes the strength of the sound wave and is measured in decibels.1 The
amplitude tells us how loud a sound is relative to a reference value; 0 dB, the refer‐
ence value, represents the lowest sound perceived by the human ear. Your breathing
is around 10 dB, an intense concert could be 120 dB (starts getting painful), and the
Krakatoa Eruption, a colossal volcano eruption in 1883, could be heard even 3,000
miles (4,800 kilometers) away with an estimated 310 dB, as shown in Figure 9-3.

Figure 9-3. The amplitude of some sounds in the dB scale

Amplitude is usually measured in decibels, but the array is frequently normalized, so
the numbers are from –1 to 1. To visualize the audio, we can use a waveform, a plot
of the amplitudes over time. Let’s plot the waveform with librosa, a popular library for
working with audio data:

import librosa.display

librosa.display.waveshow(array, sr=sampling_rate);

Audio Data | 297



The waveform aids in doing the initial exploration of audio data. If you listen to
the audio, you can identify that the first waves correspond to when the reader says,
“the second in importance is as follows” followed by a short pause. More generally,
waveforms are an intuitive way to identify irregularities in the audio and get an
overall sense of the signal and its patterns.

Spectrograms
Waveforms and spectrograms (Figure 9-4) are different ways to represent audio
signals. This section explains what spectrograms are and when to use them.

Figure 9-4. Waveform (left) and mel spectrogram (right) representing the same
audio clip

298 | Chapter 9: Generating Audio



Let’s say we want to train a generative model to create a new sound or synthetic
speech conditioned on an input audio. A straightforward approach might be to use
the raw audio waveform as the model’s input. Waveforms are a direct and intuitive
representation of sound, containing all the information necessary to reproduce the
original audio. You can easily verify this by listening to a few samples from a dataset,
whether they include voices, music, or other sounds. So, if waveforms can accurately
represent sound, why don’t we use them to train our models?

The first challenge lies in the waveform’s dimensionality. Although waveforms are
one-dimensional, they consist of a very large number of data points. Each second of
audio has tens of thousands of samples for the model to process, making it difficult to
learn patterns and structures in the data. This high dimensionality makes it difficult
for models to effectively learn patterns and structures in the data.

Additionally, our hearing system is very sensitive to small differences in attributes
like pitch or timbre, which are related to the frequency characteristics of the sound.
While these attributes are encoded in the waveform’s shape, they are challenging
to identify—even for humans—just by looking at the waveform. The most obvious
information we can extract from a waveform is how amplitude changes over time,
often called the time domain. However, attributes related to frequency, such as what
makes a piano sound different from a violin, are much harder to discern from the
waveform alone (Figure 9-5).

While it is possible to train a model using raw waveform data (as we’ll explore
later in this chapter), the sheer number of samples involved presents a significant
challenge. For instance, one minute of audio at a sampling rate of 16,000 contains
nearly a million samples. If we attempt to reduce this dimensionality by averaging
or combining samples, we risk losing the nuanced differences that are crucial in the
frequency domain. Even with a sampling rate of 16,000, which is adequate for voice,
it’s insufficient for high-quality music. There’s a reason consumer audio standards,
from CDs to streaming services, typically use a sampling rate of 44.1 kHz or higher.

Given these challenges, a more effective approach often involves converting the audio
waveform into a different representation called a spectrogram. This compact visual
representation depicts how the frequency and amplitude of sound change over time.
By explicitly capturing frequency details, spectrograms provide a more structured
and informative representation of the audio signal, which makes it easier for models
to learn from. Spectrograms transform the problem from the time domain to the
time-frequency domain, which is often more suitable for ML tasks involving audio.
However, it is important to note that spectrograms are a lossy representation, mean‐
ing they do not retain all the information from the original waveform. Despite this,
the loss is usually acceptable, as spectrograms preserve the most perceptually relevant
features.

Audio Data | 299



Figure 9-5. The same note played by several instruments has the same pitch (frequency)
and amplitude, but it sounds different because of the waveform’s shape variations. A
pure note is a perfect sine wave.

Before we dive into spectrograms, let’s look at frequencies. We’ll plot four waves with
the same amplitude ranges but varying frequencies:

import numpy as np
from matplotlib import pyplot as plt

def plot_sine(freq):
    sr = 1000  # samples per second
    ts = 1.0 / sr  # sampling interval
    t = np.arange(0, 1, ts)  # time vector
    amplitude = np.sin(2 * np.pi * freq * t)

    plt.plot(t, amplitude)
    plt.title("Sine wave with frequency {}".format(freq))
    plt.xlabel("Time")

fig = plt.figure()

plt.subplot(2, 2, 1)
plot_sine(1)

plt.subplot(2, 2, 2)
plot_sine(2)

plt.subplot(2, 2, 3)
plot_sine(5)

300 | Chapter 9: Generating Audio



2 Explaining Fourier Transforms is outside the scope of the book. There are many educational resources for this
such as 3Blue1Brown’s video on the topic.

plt.subplot(2, 2, 4)
plot_sine(30)

fig.tight_layout()
plt.show()

As you can observe, despite the waves sharing the same amplitude ranges, they
exhibit different frequencies. While these are simple sine waves, real-world sounds
are more complex. Typically, a sound will be a composition of multiple waves com‐
bined, each with its frequency and amplitude. Therefore, our first task is to break
the sound wave into its multiple, simpler components. Why is this useful? This
process allows us to extract valuable information that a model can leverage: How does
the amplitude change over time at different frequencies? How can we decompose
the sound? We employ Fourier Transforms (FT), a mathematical tool that enables
decomposing a single function into multiple functions.2

Let’s begin with some simple sinusoidal functions, as shown in Figure 9-6. In the first
column, we have the sine functions. In the second column, we have a plot of the FT,
which is the function in the frequency domain.

Audio Data | 301

https://oreil.ly/rByYO


3 There are some nuances to this. When we calculate the FT of a real signal, its absolute value is symmetric.
This leads to having a mirrored plot in the frequency domain. For explanation purposes, we plot the first half.

Figure 9-6. Some sinusoidal functions and their frequency spectrums. Pure notes (sine
waves) have a single peak at the sine period, whereas more-complex sounds show several
peaks in the frequency domain.

Let’s analyze the top row. On the left, we have the original waveform—a sine wave
with a one-cycle-per-second frequency. On the right, the FT plot depicts frequency
on the x-axis and amplitude in the frequency domain on the y-axis. Observe the peak
at 1, which aligns with the original waveform’s frequency. The following rows show
examples with different frequencies and share the same behavior: the FT plot peaks
at the original waveform’s frequency. The y-value is half the number of samples (in
this example, the sampling rate is 2,000 and it is just one second, so we have 2,000
samples) multiplied by the amplitude in the original waveform amplitude (1 in the
first five rows).3

Now, let’s explore the last row—a more intriguing case. The waveform combines
three distinct sinusoidal functions with varying amplitudes (1, 3, and 1.5) and fre‐
quencies (2, 5, and 14). It’s hard to discern the composition just by looking at the
waveform, so here’s where the frequency domain is useful. In the frequency domain,
we can observe three peaks corresponding to the original function’s frequencies: 2,
5, and 14. Consequently, we can reverse-engineer and describe the initial waveform’s
three functions.

302 | Chapter 9: Generating Audio



At a frequency of 2 Hz, the frequency domain amplitude (y-axis at the right) is
1,000. By performing 1,000 × 2 / 2,000, we end up with 1, the amplitude of the first
sinusoidal function composing the waveform. Similarly, a frequency of 3 Hz yields a
frequency domain amplitude of 3,000, and by doing 3,000 × 2 / 2,000, we end up with
3. The decomposed sine waves are depicted in Figure 9-7. FTs give us a mechanism
that allows us to analyze complex waveforms and understand the frequencies that
compose them. We’ve revealed hidden complexities within a sound, information that
we thought wasn’t there but is. This provides much more information and will be key
to models that can transcribe speech or generate music.

Figure 9-7. A complex sound wave can be decomposed into sinusoidal frequencies by
analyzing the spectrum representation

What about the sound at the beginning of the chapter? As with the waveforms
in Figure 9-7, the function can be broken into multiple sine functions with their
amplitudes and frequencies. Let’s look at its frequency domain plot:

# Compute the Fast Fourier Transform (FFT) of the input signal
X = np.fft.fft(array)

# Length of the FFT result (which is the same as the length of the input signal)
N = len(X)

# Calculate the frequency bins corresponding to the FFT result
n = np.arange(N)
T = N / sampling_rate
freq = n / T

# Plot the amplitude spectrum for the first 8000 frequency bins
# We could plot all the bins, but we would get a mirror image of the spectrum
plt.stem(freq[:8000], np.abs(X[:8000]), "b", markerfmt=" ", basefmt="-b")
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude in Frequency Domain")
plt.show()

Audio Data | 303



This audio is more challenging to interpret than the previous examples. We can see
that most of the sound is in the 0–800 Hz range. We can also see that around 170
Hz, there are some loud noises. Although the plot is interesting, we lose information
in the time domain. We don’t know at what time we had sounds with specific
frequencies. Waveforms have amplitude and time information, and FT plots have
amplitude and frequency information. Can we combine the three at the same time?

Spectrograms plot how the frequency and amplitude of the signal change through
time. They are informative tools that visualize time, frequency, and amplitude in a
single plot. To create a spectrogram, we’ll slide a window through the original wave‐
form and compute the FT for that segment to capture how the frequencies change
through time. The windows can then be stacked together to form the spectrogram.
This approach of sliding a window through the audio is called Short-Time Fourier
Transform.

With librosa, we can use stft() to obtain the Short-Time Fourier Transform. In
addition to computing the spectrogram, we convert the amplitude to a decibel scale,
which is logarithmic and much better for visualizing. Remember that the amplitude
is the difference of sound pressure. Hence, the numerical range of sound pressure
is very wide. By using a logarithmic scale, we limit the scale, make the plots more
informative, and have information closer to the way humans perceive sound.

304 | Chapter 9: Generating Audio



The decibel scale is logarithmic, meaning that each 10 dB increase
corresponds to a tenfold increase in relative sound intensity. How‐
ever, our perception of loudness does not align directly with these
physical changes. While the decibel scale and our perception of
loudness both follow logarithmic patterns, they do so differently.
Specifically, a 10 dB increase in sound intensity is perceived by
the human ear as roughly doubling the loudness, not tenfold. This
difference arises because the human auditory system compresses
changes in intensity into a more manageable range of perceived
loudness.

Next, we’ll look at the spectrogram of our example:

# Compute Short-Time Fourier Transform (STFT)
# We take the absolute value of the STFT to get the amplitude
# of each frequency bin.
D = np.abs(librosa.stft(array))

# Convert the ampltiude into decibels
# which is logarithmic.
S_db = librosa.amplitude_to_db(D, ref=np.max)

# Generate the spectrogram display
librosa.display.specshow(S_db, sr=sampling_rate, x_axis="time", y_axis="hz")
plt.colorbar(format="%+2.0f dB");

Audio Data | 305



The x-axis is time, just as in the waveform. The y-axis shows the frequency (using
Hertz, a linear unit), and the color represents the intensity (decibels) of the frequency
at a given point. Areas in black represent areas with no energy (silence). As before,
we can observe some noise in the first 2.4 seconds and the last 1.6 seconds. The
loudest points happen at a low frequency (bright color and low value in the y-axis).
This matches the waveform and the frequency domain plot, where we got a high
amplitude at low frequencies.

You might be wondering why we have negative decibel values. As
we used amplitude_to_db() with a ref=np.max, the maximum
value of the spectrogram is 0 dB. The rest of the values are relative
to this maximum value. For example, a value of –20 dB means that
the amplitude is 20 dB lower than the maximum value.

A popular spectrogram variation is called the mel spectrogram. While in a normal
spectrogram, the unit for frequency is linear, the mel spectrogram uses a scale sim‐
ilar to how we (humans) perceive sound. Humans perceive audio logarithmically,
meaning we’re more sensitive to changes at low frequencies but less so at high
frequencies. The difference between 500 and 1,000 Hz is much more noticeable than
between 5,000 and 5,500. The librosa library once again offers a convenient method
that computes the mel spectrogram. In the mel spectrogram, equal distances in the
frequency (y-axis) have the same perceptual distance. Let’s plot the mel spectrogram:

# Generate a Mel-scaled spectrogram from the audio signal.
# The result is a matrix where each element corresponds to the power
# of a frequency band (in the Mel scale) at a specific time.
S = librosa.feature.melspectrogram(y=array, sr=sampling_rate)

# We convert the power spectrogram to a decibel scale
S_dB = librosa.power_to_db(S, ref=np.max)

# Display the Mel-scaled spectrogram
librosa.display.specshow(S_dB, sr=sampling_rate, x_axis="time", y_axis="mel")
plt.colorbar(format="%+2.0f dB");

306 | Chapter 9: Generating Audio



The mel spectrogram has similar patterns to the original, but we can notice some
differences. First, the y-scale is not linear: the distance between 512 and 1,024 is the
same as that between 2,048 and 4,096. Second, the areas with more energy (more
decibels) in low frequency are much more noticeable in the mel spectrogram. This
corresponds to how humans perceive sound.

Apart from being great visual representations to understand audio signals, spectro‐
grams are commonly used directly by ML models. For example, a spectrogram of
a song can be used as input to a model to classify its genre. Similarly, a model can
receive some words as input and output a spectrogram representing the audio of a
person speaking those words.

Speech to Text with Transformer-Based Architectures
Let’s now dive into ASR, the task of transcribing an audio file to text. As with many
other tasks, we can use the transformers pipeline(), which conveniently takes care of
all preprocessing and postprocessing and is a useful inference wrapper. Let’s use the
smallest variant of Whisper, a popular open source model released by OpenAI, to get
an initial baseline:

from transformers import pipeline

pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-small",
    max_new_tokens=200,

Speech to Text with Transformer-Based Architectures | 307



)
pipe(array)

{'text': ' The second in importance is as follows. Sovereignty may be defined
to be'}

The results are solid for using a small version (244 million parameters, which can
efficiently run on-device). More surprisingly, if you hear the original audio, it was
cut in the middle of “be.” Whisper can predict the entire word even if it was not com‐
pleted. Additionally, Whisper predicted punctuation (e.g., the period). The following
sections will shed some light on how models that perform ASR work. Before we
explore Whisper, let’s discuss how encoder-only models can be applied to ASR.

Encoder-Based Techniques
One way to look at the ASR task is to think of it as we do about text token classifica‐
tion. The idea is analogous to using BERT in the NLP world. First, you pretrain a
model with MLM using an encoder-only transformer; that is, a model is pretrained
with a large amount of unlabeled data, and part of the input is masked. The model’s
objective is to predict which word should fill the mask. We can apply the same
principle in audio. Rather than masking text, we mask audio (to be precise, the
latent speech representation), and the model learns contextualized representations.
Afterward, this model can be fine-tuned with labeled data on different audio tasks,
such as speaker identification or ASR. Let’s dive into achieving ASR with this idea.

The first challenge, which we already mentioned, is that an audio sample can be very
long. A 30-second audio sample with a sample rate of 16 kHz will yield an array of
480,000 values. Using 480,000 values for a single input sample to the transformer
encoder would require massive amounts of memory and computation. To mitigate
this, one approach is to have a CNN as a feature encoder. The CNN will slide through
the input data (the waveform) and output a latent speech representation. For exam‐
ple, assuming a window of 20 milliseconds sliding through 1 second of audio, we
would end up with 50 latent representations (this assumes there are no overlapping
windows; in CNN terms, we are using a stride of 20). These latent representations are
then passed to a classical transformer encoder, which outputs embeddings for each
of the 50 representations. During pretraining, spans of the latent representations are
masked, and hence, the model learns to predict how to fill the missing parts.

A simple linear classification head is added to the encoder for ASR fine-tuning: the
goal is that the classifier estimates the text that corresponds to each of the audio
windows processed by the encoder. The number of classes that the model will classify
is a design decision. We could decide to classify entire words, syllables, or just
characters, but given we’re using a window of 20 milliseconds, a single word would
not fit in a window. Classifying characters appears to make a lot of sense in this
context, and it has the additional benefit that we can keep a very small vocabulary.
For example, for English, we can use a vocabulary of the 26 English characters

308 | Chapter 9: Generating Audio



plus some special tokens (e.g., a token for silence, a token for unknown, etc.). To
keep a minimal vocabulary, we usually preprocess the text, uppercasing all of it and
converting numbers to words (e.g., “14” to “fourteen”).

In the first part of this chapter, we used spectrograms to capture the
amplitude and frequency characteristics of the input data in a con‐
cise 2D visual representation. Now, we are exploring architectures
that process the data differently, using CNNs to extract features
directly from the waveform without converting it to a spectrogram.
The choice between these approaches depends on factors like the
specific task and the architecture’s design.
As we’ll discuss soon, some models take spectrograms as input,
while others work directly with the raw waveform. Transformers,
with their attention mechanisms, are particularly effective for han‐
dling sequential data, making it important to consider the temporal
structure of the input.

Let’s recap the whole flow to perform ASR with encoder-based models:

1. Raw audio data (1D array) representing the amplitudes is received.1.
2. Data is normalized to zero mean and univariance to standardize across different2.

amplitudes.
3. A small CNN turns the audio into a latent representation. This reduces the length3.

of the input sequence.
4. The representations are then passed to an encoder model, which outputs embed‐4.

dings for each representation.
5. Each embedding is finally passed through a classifier, which predicts the corre‐5.

sponding character for each one.

The output of such a model would be something like the following:

CHAAAAAPTTERRRSSIXTEEEEENIMMMIIGHT...

Hmmm…that resembles a text, but obviously, it’s not right. What’s going on? If the
sound of a character spreads over a period longer than a single window, it might
appear multiple times in the output. Remember that the model does not know when
each character happened during training, so it’s impossible to align the audio with the
text directly.

An approach to solve this, used initially for RNNs, is called Connectionist Temporal
Classification (CTC). The idea behind using CTC in audio is to add the padding
token (for visualization purposes, we’ll use the character *), which helps as a bound‐
ary between groups of characters, and a separator token (/) that separates words. The

Speech to Text with Transformer-Based Architectures | 309



model will learn to predict such tokens as well. During inference, the output might
look as follows:

CHAAAAA*PTT*ERRR/SS*IX*T*EE*EEN/I/MMM*II*GHT

With this output, we can deduplicate by merging equal consecutive characters in the
same group, resulting in our desired outcome.

CHAPTER SIXTEEN I MIGHT

All these ideas (using an encoder-only model, processing the waveform with a CNN,
and using CTC to perform classification) form the foundation of encoder-based
architectures such as Meta’s Wav2Vec2 (2020) and HuBERT (2021). Wav2Vec2 is pre‐
trained with Librispeech and LibriVox (both unlabeled datasets). It can be fine-tuned
with just 10 minutes of labeled data to outperform models trained with significantly
more data. This is very interesting as a base model can easily be tuned for specific
domains or accents without much data. The downstream task being solved here
is ASR, but the same pretrained model can be fine-tuned for other tasks, such as
speaker recognition and language detection. The following code shows each step
of running inference with Wav2Vec2 (note that you can also use pipeline() as a
high-level API):

import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

from genaibook.core import get_device

device = get_device()

# The Wav2Vec2Processor has the pre- and post-processing incorporated
wav2vec2_processor = Wav2Vec2Processor.from_pretrained(
    "facebook/wav2vec2-base-960h"
)
wav2vec2_model = Wav2Vec2ForCTC.from_pretrained(
    "facebook/wav2vec2-base-960h"
).to(device)

# Run forward pass, making sure to resample to 16kHz
inputs = wav2vec2_processor(
    array, sampling_rate=sampling_rate, return_tensors="pt"
)
with torch.inference_mode():
    outputs = wav2vec2_model(**inputs.to(device))

# Transcribe
predicted_ids = torch.argmax(outputs.logits, dim=-1)
transcription = wav2vec2_processor.batch_decode(predicted_ids)
print(transcription)

['THE SECOND IN IMPORTANCE IS AS FOLLOWS SOVEREIGNTY MAY BE DEFINED TO']

310 | Chapter 9: Generating Audio

https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2106.07447


4 Diving into the specifics of their training losses and architectures is outside the book’s scope, but we suggest
reviewing the papers for those interested.

As the models are pretrained with data with a specific
sampling rate, using audio with the same sampling rate is
required during inference. You can achieve this by resam‐
pling the data (e.g., using dataset.cast_column("audio", Audio
(sampling_rate=16_000))) or specifying the sampling_rate in
the processor, as done in the preceding snippet.

HuBERT follows the same concept of pretraining to learn useful latent representa‐
tions but changes the training process to use the original MLM objective of BERT.4

While Wav2Vec2 predicts characters, HuBERT processes the waveform with cluster‐
ing techniques to learn discrete hidden speech units, which can be seen as equivalent
to tokens in NLP. The model predicts these hidden units in the second stage at
randomly masked locations.

Note that Wav2Vec2 and HuBERT work only for English. A few weeks after the
Wav2Vec2 release, Meta released XLSR-53, which has the same architecture as
Wav2Vec2 but was pretrained on 56,000 hours of speech in 53 languages. XLSR
learns speech units common to several languages. Hence, languages with little digital
data can still get decent results. In 2021, Meta released XLS-R (yes, it’s different from
XLSR), a 2-billion-parameter model trained with a similar setup, but using nearly 10
times as much unlabeled data (436,000 hours) from 128 languages.

It is important to note that these models are acoustic: their outputs are based purely
on the sound of the input and lack inherent language information. For example,
the model might frequently misspell words, output things that are not words, or
confuse homophones (e.g., “bear” versus “bare”). An approach to mitigate this is to
incorporate language information during the generation phase.

Typically, in the classification stage, we compute argmax(logits) to predict the most
likely character. However, another approach is to introduce a language model that can
predict the most likely word given the sequence of characters. An n-gram model is
a type of language model that predicts the likelihood of a word based on the n – 1
previous words in a given text corpus. For instance, a bigram model (n = 2) considers
pairs of words, while a trigram model (n = 3) considers triplets. This probabilistic
model helps in understanding the context and structure of the language, and it can
be very small and efficient. A full-fledged transformer-based language model, like the
ones in Chapter 2, can also be used. However, n-grams achieve most of the quality
improvements these models would, at a fraction of the cost in compute, memory, and
inference time.

Speech to Text with Transformer-Based Architectures | 311

https://arxiv.org/abs/2111.09296


The n-gram score can be added to beam search to generate the k most probable text
sequences. By integrating an LM into beam search, we can enhance the decoding
process. The beam search evaluates both the acoustic and language model scores,
which helps correct misspellings and filter out nonsensical words. This combined
approach significantly improves the accuracy and coherence of the generated text.

You might want to increase the probabilities of certain words (e.g.,
if some words are not in the language model or you need to boost
domain-specific data). To do this, you can count the number of hot
words in the output and increase the probability.

Encoder-Decoder Techniques
Using encoder models with a CTC head is one of the most popular approaches for
ASR. As discussed, acoustic models might generate spelling errors, for which an
n-gram model needs to be incorporated. These challenges lead to the exploration of
encoder-decoder architectures.

We can formulate the ASR problem as a sequence-to-sequence problem rather than
a classification problem. This is what Whisper, the open source model we introduced
at the beginning of this section, does. Unlike Wav2Vec2 or HuBERT, Whisper (Fig‐
ure 9-8) was trained in a supervised setting with a massive amount of labeled data:
over 680,000 hours of audio with corresponding text. For comparison, Wav2Vec2 was
trained on less than 60,000 hours of unlabeled data. About one-third of the data is
multilingual, which enables Whisper to perform ASR for 96 languages. Given that the
model is trained with labeled data, Whisper learns a speech-to-text mapping directly
during pretraining, without requiring fine-tuning. Another Whisper peculiarity is
that it’s trained to operate without an attention mask: it can directly infer where to
ignore the inputs.

How can we do inference? Whisper, unlike Wav2Vec2, operates with spectrograms.
We begin by padding and/or truncating a batch of audio samples to ensure uniform
input length, converting them into log-mel spectrograms, and processing the outputs
by using a CNN before passing them to the encoder. The encoder output is then
passed to the decoder, which predicts the next token, one at a time, in an autoregres‐
sive way (just as models like Llama do) until the end token is generated. While the
encoder-decoder architecture may be slower than encoder-only approaches, Whisper
can handle long audio samples, can predict punctuation, and does not require an
additional LM during inference.

In encoder-only models, incorporating an LM is necessary to address spelling errors
generated by acoustic models, often requiring the use of an external n-gram model.
In Whisper’s case, the decoder serves a dual purpose: generating text transcriptions

312 | Chapter 9: Generating Audio



5 When the system incorporates the language model internally, it’s called deep fusion. In the case of CTC with
n-gram, the LM is external, and we call it shallow fusion.

while also functioning as an LM.5 Why does the decoder operate as an LM? By
learning to predict the next token in the transcription sequence based on contextual
information from the encoder, Whisper eliminates the need for an external LM
during inference.

Figure 9-8. Whisper training is modeled in a sequence-to-sequence fashion on a wide
variety of tasks, including translation, transcription, multilingual speech recognition,
and others. Special tokens are used to identify the task, language, and interesting points
in the data, conditioning the model to perform the desired operation. (Adapted from an
image in the Whisper paper.)

Whisper uses a specific sequence format, so looking at Figure 9-8 is essential to
understand its generation. Special tokens are used to indicate the language or task,
and thus guide the model toward the desired output. This is akin to the conditioning
methods we covered in previous chapters. Some of the most important tokens are as
follows:

• The speech begins with a start of transcript token.•
• If the language is not English, there is a language tag token (e.g., hi for Hindi).•
• With the language tag, we can perform language identification, transcription, or•

translate to English.
• If there’s a no speech token, Whisper is used for voice-activity detection.•

Speech to Text with Transformer-Based Architectures | 313

https://arxiv.org/pdf/2212.04356


Let’s look at an example in Spanish with its corresponding format:

from transformers import WhisperTokenizer

tokenizer = WhisperTokenizer.from_pretrained(
    "openai/whisper-small", language="Spanish", task="transcribe"
) 

input_str = "Hola, ¿cómo estás?"
labels = tokenizer(input_str).input_ids 
decoded_with_special = tokenizer.decode(
    labels, skip_special_tokens=False
) 
decoded_str = tokenizer.decode(labels, skip_special_tokens=True) 

print(f"Input:                         {input_str}")
print(f"Formatted input w/ special:    {decoded_with_special}")
print(f"Formatted input w/out special: {decoded_str}")

'Input:                         Hola, ¿cómo estás?'
'Formatted input w/ special:    '
 '<|startoftranscript|><|es|><|transcribe|><|notimestamps|>Hola, '
 '¿cómo estás?<|endoftext|>'
'Formatted input w/out special: Hola, ¿cómo estás?'

Load the pretrained tokenizer. As Whisper requires adding some tokens, such as
the language ID token and the task identifier, we need to specify the language
and task parameters.

Tokenize the input string.

Decode the token IDs back to the original string, but including the special
tokens.

Decode the token IDs back to the original string, but excluding the special
tokens.

Creating transcriptions with Whisper is not too different from using Wav2Vec2:

1. We use the processor to prepare the audio for the model’s expected format.1.
In this case, mel spectrograms are extracted from the raw speech and then
processed to be ready to be consumed by the model.

2. The model generates the token IDs corresponding to the transcription.2.
3. The processor decodes the IDs and converts them into human-readable strings.3.

OpenAI released nine Whisper variants, ranging from 39 million to 1.5 billion
parameters, with model checkpoints for multilingual and English-only setups. In this

314 | Chapter 9: Generating Audio



example, we’ll use the intermediate, small, multilingual model, which can run with
2 GB of GPU memory and is six times faster than the largest model.

New models, such as the second and third versions of the large
model, keep being released. Additionally, the Distil Whisper
project has achieved the development of high-quality, smaller var‐
iants of the original models, up to six times faster and 49% smaller.

from transformers import WhisperForConditionalGeneration, WhisperProcessor

whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
whisper_model = WhisperForConditionalGeneration.from_pretrained(
    "openai/whisper-small"
).to(device)

inputs = whisper_processor(
    array, sampling_rate=sampling_rate, return_tensors="pt"
)
with torch.inference_mode():
    generated_ids = whisper_model.generate(**inputs.to(device))

transcription = whisper_processor.batch_decode(
    generated_ids, skip_special_tokens=False
)[0]
print(transcription)

('<|startoftranscript|><|en|><|transcribe|><|notimestamps|> The '
 'second in importance is as follows. Sovereignty may be defined to '
 'be<|endoftext|>')

This is a good opportunity to dive into WhisperProcessor. To better understand the
preceding code, we suggest the following:

• Review its documentation.•
• Determine the two components of the processor.•
• Identify and examine the processor’s outputs (inputs in the preceding code).•

From Model to Pipeline
In the previous sections, you learned about different architectures and approaches to
performing ASR. However, there are still three challenges to tackle when using them
in production use cases:

Long audio transcription
The first limitation is that transformers usually have a finite input length they
can handle. Wav2vec2, for example, uses attention, which has a quadratic com‐
plexity. Whisper does not have an attention mechanism, but it’s designed to work

Speech to Text with Transformer-Based Architectures | 315

https://oreil.ly/C6OwW
https://oreil.ly/C6OwW
https://oreil.ly/I4IDB


with audios of 30 seconds and will truncate longer ones. A simple approach to
solve this is chunking: chunk/split audios into shorter samples, run inference
on them, and then reconstruct the output. Although efficient, this can lead to
poor quality around the chunking border. To solve this, we can do chunking
with strides, which means we would have overlapping chunks and then chain
them. The result will not be the same as what the model would have predicted
on the full-length audio, but the results should be close. We can batch the chunks
and run them through the model in parallel, hence being more efficient than
transcribing the whole audio file sequentially. Both chunking and chunk batching
can quickly be done using the chunk_length_s and batch_size parameters of an
ASR pipeline.

Live inference
Performing live ASR is desirable for many applications. Now that you have
learned to chunk, we can use the model with small chunks (e.g., 5 seconds) and
a 1-second stride. Making live inference with CTC models will be faster as it’s
a single-pass architecture compared to those incorporating decoders. Although
Whisper would be slower, you can perform the same chunking logic to transcribe
chunks as they come and obtain strong results.

Timestamps
Having timestamps that indicate the start and end time for short audio passages
can be useful to align a transcription with the input audio. For example, if you’re
generating subtitles from a video call, you will want to know to which time seg‐
ment each transcription belongs. This can easily be enabled using return_time
stamps. Under the hood, we know each outputted token’s context window and
the sampling_rate for CTC models.

Let’s combine all of these with a longer (1-minute) audio:

from genaibook.core import generate_long_audio

long_audio = generate_long_audio()

device = get_device()

pipe = pipeline(
    "automatic-speech-recognition", model="openai/whisper-small", device=device
)
pipe(
    long_audio,
    generate_kwargs={"task": "transcribe"},
    chunk_length_s=5,
    batch_size=8,
    return_timestamps=True,
)

316 | Chapter 9: Generating Audio



{'chunks': [{'text': ' the second in importance is as follows.',
             'timestamp': (0.0, 3.0)},
            {'text': ' Sovereignty may be defined to be the right of '
                     'making laws.',
             'timestamp': (3.0, 6.33)},
            {'text': ' In France, the king really exercises a '
                     'portion of the sovereign power, since the laws '
                     'have no weight till he has given his assent to '
                     'them.',
             'timestamp': (6.33, 16.89)},
            {'text': ' He is moreover the executor of the laws, but '
                     'he does not really cooperate in their '
                     'formation since the refusal of his asset does '
                     'not annul them. He is therefore merely to be '
                     'considered as the agent of the sovereign '
                     'power.',
             'timestamp': (16.89, 36.61)},
            {'text': ' But not only does the king of France exercise '
                     'a portion of the sovereign power, He also '
                     'contributes to the nomination of the '
                     'legislature, which exercises the other '
                     'portion. He has the privilege of appointing '
                     'the members of one chamber and of dissolving '
                     'the United States has no share in the '
                     'formation of the legislative body',
             'timestamp': (36.61, 59.75)},
            {'text': ' and cannot dissolve any part of it. The king '
                     'has the same right of bringing forward '
                     'measures as the chambers.',
             'timestamp': (59.75, 67.09)},
            {'text': ' A right which the president does not possess.',
             'timestamp': (67.09, 70.43)}],
 'text': ' the second in importance is as follows. Sovereignty may '
         'be defined to be the right of making laws. In France, the '
         'king really exercises a portion of the sovereign power, '
         'since the laws have no weight till he has given his assent '
         'to them. He is moreover the executor of the laws, but he '
         'does not really cooperate in their formation since the '
         'refusal of his asset does not annul them. He is therefore '
         'merely to be considered as the agent of the sovereign '
         'power. But not only does the king of France exercise a '
         'portion of the sovereign power, He also contributes to the '
         'nomination of the legislature, which exercises the other '
         'portion. He has the privilege of appointing the members of '
         'one chamber and of dissolving the United States has no '
         'share in the formation of the legislative body and cannot '
         'dissolve any part of it. The king has the same right of '
         'bringing forward measures as the chambers. A right which '
         'the president does not possess.'}

You may notice that the transcript is mostly accurate, but one or two sentences that
are present in the audio are missing from the transcript. This is a common issue with

Speech to Text with Transformer-Based Architectures | 317



the smaller Whisper models. Since these models are generative (i.e., they generate text
rather than directly classifying sounds into tokens), they can occasionally miss words
or even hallucinate content. Let’s discuss some strategies for evaluating these models.

Evaluation
With so many models that can perform audio tasks, deciding which one to pick can
be complex. For pretrained models, we usually look at multiple tasks’ downstream
performance. Although the most common evaluation downstream task is ASR, we
can also evaluate pretrained models fine-tuned in other tasks such as keyword
spotting, intent classification, or speaker identification. Apart from performance in
downstream tasks, we also need to look into other factors like the model’s size,
inference speed, languages for which it was trained, and proximity of the training
data with the inference data. For example, if you’re working with a specific accent,
you might want to fine-tune a model with data from that accent. If you need real-time
inference, you will want a smaller variant.

In this section, we’ll do a high-level evaluation of different models for English speech
recognition. Although this won’t provide an end-to-end evaluation framework for
picking the best model for your use case, it does give some insights into practical
ways for analyzing model performance. Let’s evaluate two small multilingual mod‐
els: the 74-million-parameter version of multilingual Whisper and the 94-million-
parameter version of Wav2Vec2. We can compare the inference speed and peak
amount of GPU used to get started:

from genaibook.core import measure_latency_and_memory_use

wav2vec2_pipe = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h",
    device=device,
)
whisper_pipe = pipeline(
    "automatic-speech-recognition", model="openai/whisper-base", device=device
)

with torch.inference_mode():
    measure_latency_and_memory_use(
        wav2vec2_pipe, array, "Wav2Vec2", device, nb_loops=100
    )
    measure_latency_and_memory_use(
        whisper_pipe, array, "Whisper", device=device, nb_loops=100
    )

Wav2Vec2 execution time: 0.009195491333007812 seconds
Wav2Vec2 max memory footprint: 1.7330821120000002 GB
Whisper execution time: 0.092218232421875 seconds
Whisper max memory footprint: 1.6933248 GB

318 | Chapter 9: Generating Audio



Unsurprisingly, the maximum memory footprint (how much VRAM was used) of
both models is very similar, which makes sense given both have a similar number of
parameters. A 1.7 GB footprint is relatively small, as it can run on laptops and even
on some powerful phones. Wav2Vec2 is significantly faster, which is expected given
that Whisper’s decoder generates text one token at a time.

Let’s now look at how good both models are regarding high-quality predictions. The
most common metric for evaluating ASR models is the word error rate (WER), which
calculates the number of errors by looking at the differences between a prediction
and the original label. The error is determined based on how many substitutions,
insertions, and deletions are needed to get from the prediction to the label. For
example, given the source truth “how can the llama jump” and prediction “can the
lama jump up”, we have the following:

• One deletion, as “how” is missing•
• One substitution, as “llama” was replaced with “lama”•
• One insertion, as “up” is in only the prediction•

The WER is the sum of the errors divided by the number of words in the label, so
we have a WER of 0.6 (three errors divided by five predictions). Note that although
there’s just one character differing between “llama” and “lama”, that’s counted as a
full error. Many alternative metrics, such as character error rate (CER), evaluate the
difference based on each character. Still, the industry widely adopts WER as the go-to
metric for ASR evaluation. The evaluate library provides a high-level API interface to
use these metrics. Using the examples, let’s learn how to load and calculate the WER
metric:

from evaluate import load

wer_metric = load("wer")

label = "how can the llama jump"
pred = "can the lama jump up"
wer = wer_metric.compute(references=[label], predictions=[pred])

print(wer)

0.6

A second aspect to consider before doing evaluation is that different ASR models
have different output formats based on their training data. For example, Whisper
was trained with casing and punctuation, so its transcriptions contain them. To be
fair when evaluating models, we can normalize the labels and predictions before
computing the WER. This is not perfect, as a model that does learn casing and
punctuation would not get a lower error than a model that does not, but it’s a solid
starting point.

Speech to Text with Transformer-Based Architectures | 319



The transformers library offers normalizers (BasicNormalizer, EnglishTextNormal
izer, etc.). BasicTextNormalizer removes successive whitespaces and basic punctu‐
ation and lowercases the text. EnglishNormalizer is more advanced, standardizing
numbers (“million” to “1000000”), managing contractions, and more. Let’s use Basic
Normalizer, as it will work well; the important part is that we normalize all text and
transcriptions consistently:

from transformers.models.whisper.english_normalizer import BasicTextNormalizer

normalizer = BasicTextNormalizer()
print(normalizer("I'm having a great day!"))

i m having a great day

We’ll compare the models using Common Voice, a popular crowd-sourced multilin‐
gual dataset. We’ll use a part of the English and French test splits of the dataset
for demonstration purposes, but we could use other languages (although we would
need to be careful with the tokenization). We’ll evaluate both WER and CER on 200
samples of each language.

The Common Voice dataset is public, but you need to accept
the terms and conditions and share your name and email with
its author, the Mozilla Foundation. You can easily complete this
step by visiting the dataset page and clicking the button to signal
acceptance. If you don’t agree with the terms, feel free to use
another dataset or your own data for evaluation.

Let’s begin by implementing the evaluation pipeline:

# This code example is optimized for explainability
# The inference could be done in batches for speedup, for example.
from datasets import Audio

def normalize(batch): 
    batch["norm_text"] = normalizer(batch["sentence"])
    return batch

def prepare_dataset(language="en", sample_count=200):
    dataset = load_dataset(
        "mozilla-foundation/common_voice_13_0",
        language,
        split="test",
        streaming=True,
    ) 
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) 
    dataset = dataset.take(sample_count) 
    buffered_dataset = [sample for sample in dataset.map(normalize)]  

320 | Chapter 9: Generating Audio

https://oreil.ly/7tMt5


    return buffered_dataset

def evaluate_model(pipe, dataset, lang="en", use_whisper=False):
    predictions, references = [], []

    for sample in dataset:
        if use_whisper:
            extra_kwargs = {
                "task": "transcribe",
                "language": f"<|{lang}|>",
                "max_new_tokens": 100,
            } 
            transcription = pipe(
                sample["audio"]["array"],
                return_timestamps=True,
                generate_kwargs=extra_kwargs,
            )
        else:
            transcription = pipe(sample["audio"]["array"])
        predictions.append(normalizer(transcription["text"]))
        references.append(sample["norm_text"])
    return predictions, references

Implement function to normalize a batch using Whisper English normalization.

Load the Common Voice dataset in streaming mode.

Resample the audio dataset to 16 kHz.

Sample 200 samples from the dataset.

Normalize the dataset. We also buffer the dataset so it’s stored in a list rather than
a streaming dataset.

For Whisper, we add additional parameters for its generation (e.g., specifying the
language and task).

Now that we have the evaluation pipeline, let’s try it with the two models and two
languages. We’ll first specify the suite:

eval_suite = [
    ["Wav2Vec2", wav2vec2_pipe, "en"],
    ["Wav2Vec2", wav2vec2_pipe, "fr"],
    ["Whisper", whisper_pipe, "en"],
    ["Whisper", whisper_pipe, "fr"],
]

Speech to Text with Transformer-Based Architectures | 321



Now that we have all components in place, let’s run the evaluation:

cer_metric = load("cer")

# Pre-process the English and French datasets
processed_datasets = {
    "en": prepare_dataset("en"),
    "fr": prepare_dataset("fr"),
}

for config in eval_suite:
    model_name, pipeline, lang = config[0], config[1], config[2]

    dataset = processed_datasets[lang]

    predictions, references = evaluate_model(
        pipeline, dataset, lang, model_name == "Whisper"
    )

    # Compute evaluation metrics
    wer = wer_metric.compute(references=references, predictions=predictions)
    cer = cer_metric.compute(references=references, predictions=predictions)

    print(f"{model_name} metrics for lang: {lang}. WER: {wer}, CER: {cer}")

Reading metadata...: 16372it [00:00, 26197.69it/s]
Reading metadata...: 16114it [00:00, 36235.41it/s]

Wav2Vec2 metrics for lang: en. WER: 0.44012772751463547, CER: 0.22138
Wav2Vec2 metrics for lang: fr. WER: 1.0099113197704748, CER: 0.57450
Whisper metrics for lang: en. WER: 0.2687599787120809, CER: 0.14674
Whisper metrics for lang: fr. WER: 0.5477308294209703, CER: 0.27584

Let’s discuss the results:

• Whisper clearly outperforms Wav2Vec2 in both English and French (lower error•
rate is better).

• Although Wav2Vec2 WER for English is high, you can notice that the CER is•
much lower. As discussed before, Wav2Vec2 is an acoustic model, and it can
generate spelling errors. Whisper, on the other hand, has engrained language
modeling, so it’s more likely to generate the correct words.

• Whisper outperforming Wav2Vec2 in French is not surprising; after all, Whisper•
was trained with multilingual data, while Wav2Vec2 was trained with English
data.

We could experiment with a larger Whisper variant and further reduce the French
WER (the largest variant is 20 times larger than the base version). A second interest‐
ing aspect is that Whisper performed better than Wav2Vec2 in English. Whisper is
multilingual, so we could expect it to perform worse in English than a model tuned

322 | Chapter 9: Generating Audio



6 Empirically, people have found that setting return_timestamps=True helps reduce hallucinations in long-
form evaluation. There’s a high-level explanation about it in the Hugging Face forum.

entirely with English data. Apart from this, OpenAI also released a Whisper model
of the same size but entirely trained on English data. If we wanted to put Whisper in
production and knew all our users would speak in English, then it would be better to
switch to the English variant.

Remember that Whisper is an autoregressive model. Because of this, it can “halluci‐
nate,” and sometimes it can keep generating tokens. This is one of the main issues
compared to encoder-only approaches. Given that WER has no upper bound, a
single hallucination can significantly drive up the WER. One approach is to limit the
maximum number of generated tokens. Since Whisper is designed to transcribe 30-
second segments, we could assume 60 words or approximately 100 tokens. Another
method is to ground the model to discourage hallucination by forcing it to return
the timestamps. In an initial experiment of 100 samples, the WER went from 1.72 to
0.84, just by applying this method.6 If hallucination is an issue, how come Whisper
outperformed Wav2Vec2 in the previous evaluation? The answer is a mix of Whis‐
per’s language modeling, the labeled data, and the massive amount of data used for
pretraining.

We suggest spending some time experimenting with the following:

• Different model sizes (e.g., Whisper Tiny, of 39 million parameters, versus Large•
V2, of 1.5 billion parameters, versus the distilled variants)

• Different models (e.g., Wav2Vec2 models fine-tuned in French) or the Whisper•
variant trained only for English

• Different generation parameters•

If the ASR evaluation topic interests you, we suggest reading the
End-to-End Speech Benchmark paper. The benchmark proposes
comparing multiple end-to-end systems with a unified evaluation
using many datasets. There is also a public open source leader‐
board for speech recognition models, updated regularly with the
latest models.

That was a fun dive into ASR technologies. Let’s now explore how to do the inverse:
convert text to speech, and then generalize to audio generation.

Speech to Text with Transformer-Based Architectures | 323

https://oreil.ly/HzHrI
https://arxiv.org/abs/2210.13352
https://oreil.ly/MKes3
https://oreil.ly/MKes3


7 The selection of models in this section was based on a few factors, including their popularity, size, and
quality. SpeechT5 is versatile for handling multiple tasks. Bark is one of the best open models for generating
expressive speech. Diffusion-based techniques, although not used as much, have periods of great popularity.

8 Recall that TTS is a type of text-to-audio task.

From Text to Speech to Generative Audio
So far, you’ve learned how to do high-quality transcriptions with transformer-based
models. In this third part of the audio chapter, we’ll dive into audio-generation tech‐
niques, their evaluations, and challenges. You’ll learn about two popular TTS models:
SpeechT5 and Bark. Then we’ll briefly discuss models that can go beyond speech and
generalize to other forms of audio (e.g., music), such as MusicGen, AudioLDM, and
AudioGen. Finally, we’ll explore how to use diffusion models to generate audio with
Riffusion and Dance Diffusion.7

Training and evaluating text-to-audio (TTA) models from scratch can be significantly
expensive and challenging. Unlike ASR, TTA models can have multiple correct pre‐
dictions. Think of a TTS model:8 the generation can have different pronunciations,
accents, and speaking styles, and all can be correct. On top of that, popular ASR
datasets, such as Common Voice, tend to contain noise, as we want to build robust
systems for different conditions. Unfortunately, noise in datasets is an undesired trait
for TTA as the models would also learn to generate it. Imagine your generated speech
has a dog barking or a car honking in the background. For this reason, training
datasets for TTA need to be of high quality.

Generating Audio with Sequence-to-Sequence Models
SpeechT5 is a pretrained open model by Microsoft that can perform speech-to-text
tasks such as ASR and speaker conversion, speech-to-speech tasks such as enhance‐
ment and voice conversion, and TTS. SpeechT5, whose architecture is depicted in
Figure 9-9, uses an encoder-decoder setup where the inputs and outputs can be
either speech or text. To manage inputs from different modalities, speech and text
pre-nets convert the input into a hidden representation that the encoder receives
afterward. More specifically, the encoder pre-nets convert the input waveforms and
texts to a common hidden representation used by the encoder. Similarly, the decoder
inputs and outputs are preprocessed and postprocessed with speech and text decoder
pre-nets and post-nets. This yields six additional nets, which provide flexibility to
accomplish multiple tasks with the same model:

Text encoder pre-net
A text-embedding layer that maps to the hidden representations the encoder
expects.

324 | Chapter 9: Generating Audio



Speech encoder pre-net
Same idea as the feature extractor from Wav2Vec2: a CNN that preprocesses the
input waveform.

Text decoder pre-net
During pretraining, this is the same as the text encoder pre-net. In fine-tuning,
this is modified.

Speech decoder pre-net
Takes a log-mel spectrogram and compresses it into a hidden representation.

Text decoder post-net
Single linear layer that projects into probabilities over vocabulary.

Speech decoder post-net
Predicts the output spectrogram and refines it using additional convolutional
layers.

Figure 9-9. Architecture of the SpeechT5 model (adapted from an image in the
original paper)

For example, if we want to perform ASR, our input will be audio and the output will
be text. In that case, we’ll want to use the speech encoder pre-net and the text decoder
nets (both pre- and post-nets). The transformers library comes with a processor class
(SpeechT5Processor) that offers the functionalities to process audio and text inputs
and outputs. The structure is very similar to that in “Encoder-Based Techniques” on
page 308:

from transformers import SpeechT5ForSpeechToText, SpeechT5Processor

From Text to Speech to Generative Audio | 325

https://arxiv.org/abs/2110.07205


processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")

inputs = processor(
    audio=array, sampling_rate=sampling_rate, return_tensors="pt"
)
with torch.inference_mode():
    predicted_ids = model.generate(**inputs, max_new_tokens=70)

transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription)

['chapter sixteen i might have told you of the beginning i might '
 'have told you of the beginning of the beginning of the beginning '
 'of the beginning of the beginning chapter sixteen']

Now, we want to perform TTS. We expect text input and speech output, so we use
the text encoder pre-net and the speech decoder nets. To support multispeaker TTS,
SpeechT5 expects to receive speaker embeddings. These embeddings represent infor‐
mation about the speaker, such as their voice and accent, later enabling SpeechT5
to generate speech with such style. The embeddings are extracted with x-vectors, a
technique that maps input audios of any length to a fixed-dimensional embedding.
SpeechT5 smartly leverages the x-vector by concatenating it with the output of the
speech-decoder pre-net, hence incorporating information about the speaker when
decoding.

We could use a random speaker embedding (e.g., using torch.zeros(1, 512)), but
the results will be very noisy. Luckily, we can leverage some existing online speaker
embeddings:

from transformers import SpeechT5ForTextToSpeech

from genaibook.core import get_speaker_embeddings

processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")

inputs = processor(text="There are llamas all around.", return_tensors="pt")
speaker_embeddings = torch.tensor(get_speaker_embeddings()).unsqueeze(0)

with torch.inference_mode():
    spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)

plt.figure()
plt.imshow(np.rot90(np.array(spectrogram)))
plt.show()

326 | Chapter 9: Generating Audio



As you can observe, the model output is a log-mel spectrogram rather than a
waveform. Spectrograms are powerful tools, but they also have their limitations.
While converting waveforms to spectrograms using Short-Time Fourier Transforms
is straightforward, the reverse process of converting spectrograms to waveforms
is not. Unfortunately, spectrograms don’t contain all the information required to
reconstruct the original sound. To understand this limitation, let’s look at the general
formula for a sine wave:

F t = A sin 2πft + Φ

A tells us the amplitude, f  is the frequency, and t is the input time. All this informa‐
tion is present in the spectrogram. One element is missing, Φ (Phi). Φ represents
the phase, which provides additional information about the signal. While magnitude
and pitch are the more relevant properties, phase information is essential for accurate
audio reconstruction. As a result, we need techniques to reconstruct the original
waveform (including the phase information) from a spectrogram. This is an excellent
opportunity to learn about vocoders.

A classical reconstruction approach is the Griffin–Lim algorithm, an iterative algo‐
rithm that reconstructs a waveform from the predicted spectrogram. This algorithm
is popular as it’s simple and fast, but it can lead to low-quality audio. The Griffin–Lim
algorithm is good enough for some spectrogram generations, but, unfortunately, if
you look at the spectrogram generated in the previous example, you might notice
that the image quality could improve. Using classical techniques to convert it to
waveforms will produce lots of noise and artifacts, so we must dive into fancier
techniques that involve neural networks.

From Text to Speech to Generative Audio | 327



Obtaining training data for spectrogram-to-waveform reconstruction is extremely
easy, which has led to a rise in recent years of research on trainable models, called
neural vocoders, that receive some feature representations or spectrograms and con‐
vert them to waveforms. WaveNet was one of the first—a famous model from Deep‐
Mind that got high-quality reconstructions. WaveNet, while being of high quality,
is an autoregressive model with slow results, making it unusable for real-world use.
There has been work on top of WaveNet to make it much faster, but unfortunately, it
required lots of optimization and powerful GPUs.

GAN-based approaches have become popular, high-quality, real-time alternatives for
spectrogram-to-waveform reconstruction. At a high level, they use an adversarial
training approach in which a model (called generator) receives mel spectrograms
and outputs waveforms, and a discriminator model determines if the quality of the
audio is close enough to the ground truth, hence leading to both the generator
and discriminator to improve. MelGAN and HiFiGANs are popular GAN-based
approaches. They are fast and parallelizable, have quality matching WaveNet’s, and
have good open source implementations. We’ll use HiFiGAN as a vocoder for
SpeechT5. HiFiGAN’s generator is a CNN with two discriminators that help evaluate
different aspects of the audio, pushing the CNN to generate high-quality audio.
We can use SpeechT5HifiGan with transformers by passing the spectrogram directly
(alternatively, we can specify the vocoder parameter when generating speech):

from transformers import SpeechT5HifiGan

vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
with torch.inference_mode():
    # Alternatively
    # model.generate_speech(
    #   inputs["input_ids"],
    #   speaker_embeddings,
    #   vocoder=vocoder)
    speech = vocoder(spectrogram)

Remember that you can play the audio via Audio(array, rate=sampling_rate) in a
notebook or explore some generations we’ve compiled.

We can generate a spectrogram with SpeechT5 and convert the spectrogram into a
waveform with HiFiGAN. SpeechT5 was trained in English, so it will perform poorly
in other languages. It’s possible to fine-tune it for other languages, but it will have
some limitations, such as not supporting characters outside the English language.
Fine-tuning for other languages also requires obtaining speaker embeddings for
non-English speakers, so the model is expected to perform worse. If you played with
different speaker embeddings, the quality of the results highly depends on the speaker
embeddings. Maybe we can do better?

An ideal TTS setup is to have a single model (rather than a spectrogram generator
plus a vocoder), train it end-to-end, be flexible to use it for multiple speakers,

328 | Chapter 9: Generating Audio

https://oreil.ly/a5Yn_


9 You can find all MMS-based models on Hugging Face.

generate long audios, and have fast inference. This leads us to a new model called
VITS, a parallel end-to-end method. At a high level, VITS can be seen as a condi‐
tional VAE. VITS combines multiple tricks, some of which are familiar to us. VITS
uses a transformer encoder as the main encoder and the HiFiGAN generator as
the decoder. Other components help improve quality and flexibility to tackle the
one-to-many challenge of TTS. During training, another trick was to compare the
mel spectrogram rather than the final raw waveform when computing the reconstruc‐
tion loss. This helps the training focus on improving the perceptual quality; if you
remember, mel spectrograms approximate how we perceive sound. The model is
pushed to generate better perceivable speech by incorporating it in the reconstruction
loss.

VITS was released in 2021 by Kakao Enterprise and was among the SOTA models.
In 2023, Meta released Massively Multilingual Speech (MMS), a massive multilingual
dataset. This dataset led to many exciting results. First, it contains data to identify
among 4,000 spoken languages (audio-classification task). Meta also released TTS
and ASR data for more than 1,100 languages. The authors built a new pretrained
Wav2Vec2 model and released a multilingual ASR fine-tune for the 1,100 languages.
What does all this have to do with TTS? The MMS authors also trained separate VITS
models for each language, leading to high-quality TTS models for many languages
such as Vietnamese and Dutch, obtaining better results than the original VITS mod‐
els.9 This is an excellent example of how improving training data can lead to better
results. Let’s use this model to generate some speech:

from transformers import VitsModel, VitsTokenizer, set_seed

tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng")

inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")

set_seed(555)  # make deterministic
with torch.inference_mode():
    outputs = model(inputs["input_ids"])

outputs.waveform[0]

Going Beyond Speech with Bark
You just learned how to generate speech with SpeechT5 and VITS. This can be
applied to many use cases, but other generative audio applications go beyond speech.
For example, you might want a model that can generate sounds like laughing or
crying. You could also want to have a model that can generate songs.

From Text to Speech to Generative Audio | 329

https://oreil.ly/pzh5u


10 How to quantize the encoder’s output is a design decision. The EnCodec authors used a technique called
residual vector quantization.

The third generative model we’ll visit is Bark (Figure 9-10), by Suno AI, another
transformer-based model. Bark is one of the most popular open generative audio
models out there. It can generate sounds apart from speech. For example, you can
have laugh or sigh in the prompt, and corresponding sounds will be integrated
into the speech. We can even make it a bit musical by using ♪ in the prompts.
Bark is multilingual and includes a library of voice presets (similar to the speaker
embeddings), which allows us to generate speech with different voices.

Figure 9-10. The Bark pipeline uses three components: text-to-semantic tokens,
semantic-to-coarse tokens, and coarse-to-fine tokens

Before we explore the details of Bark, there’s one more concept to cover: audio codecs.
When compressing audio, the goal is to reduce the file size (or bitrate) while keeping
the sound quality as high as possible. Researchers have been trying to use neural
networks for this purpose for years, leading to advanced tools like SoundStream and
EnCodec. EnCodec, developed by Meta, is a popular open source neural codec that
can compress audio in real time with high quality.

EnCodec uses a three-step process. First, the encoder compresses the audio into
a latent representation. Next, a quantization layer turns this into a compact, more
efficient format (a compressed representation).10 Finally, the decoder reconstructs
the audio from the compressed data. The quantized latent space is represented by
codebooks, each containing multiple possible vectors. For example, an input audio
might be represented using 32 codebook vectors (each with 1,024 entries) in the
quantized latent space.

With codecs in our toolkit, let’s go back to Bark. The goal of Bark is to receive text
and map it into codebooks. Then, Bark uses the decoder component of a neural codec
to convert the codebooks to audio. Four components make this possible:

330 | Chapter 9: Generating Audio

https://suno.com


Text model
An autoregressive decoder transformer with a language-modeling head on top
that maps text prompts into high-level semantic tokens. Thanks to this, Bark can
generalize to sounds beyond the training data, such as sound effects and lyrics.

Coarse acoustics model
Same architecture as the text model, but it maps the semantic tokens from the
text model into the first two audio codebooks.

Fine acoustics model
A noncausal AutoEncoder transformer that iteratively predicts the following
codebooks based on the sum of the initial ones. It outputs in total two coarse
codebooks plus six generated ones.

Codec
Once all eight codebook channels are predicted, the decoder part of the EnCodec
model decodes the output audio array.

There are multiple configurable parameters. For example, we can modify the number
of codebooks generated by the coarse and fine acoustics models. We can also play
with the size of each codebook, which is 1,024 in the official implementation. This
architecture allows the model to generate new sounds, speech in multiple languages,
and more. Let’s try it out:

from transformers import AutoModel, AutoProcessor

processor = AutoProcessor.from_pretrained("suno/bark-small")
model = AutoModel.from_pretrained("suno/bark-small").to(device)

inputs = processor(
    text=[
        """Hello, my name is Suno. And, uh — and I like pizza. [laughs]
        But I also have other interests such as playing tic tac toe."""
    ],
    return_tensors="pt",
).to(device)

speech_values = model.generate(**inputs, do_sample=True)

Those are some nice results. Suppose we wanted to condition the output to sound
according to a predefined speaker. In that case, we can also use speaker embeddings
from an official library shared by the authors. It’s also possible to train these speaker
embeddings on your own voice, hence being able to generate synthetic audio follow‐
ing your prosody. Let’s use one of the predefined voices:

voice_preset = "v2/en_speaker_6"

inputs = processor("Hello, my dog is cute", voice_preset=voice_preset)

From Text to Speech to Generative Audio | 331

https://oreil.ly/ozUYr


audio_array = model.generate(**inputs.to(device))
audio_array = audio_array.cpu().numpy().squeeze()

AudioLM and MusicLM
Controlling speech generation with additional sounds is neat, but could we generate
entire melodies? The answer is yes. Let’s begin the journey with AudioLM and
MusicLM, two exciting models from Google from 2023 that can perform audio and
music generation. This can be used for all kinds of applications, such as generating
noise effects in videos, adding background music to a podcast, or designing sounds
for games.

AudioLM receives an audio recording that is a few seconds long and then generates
high-quality continuations that preserve the speakers’ identity and way of speaking.
The model is trained without transcripts and annotations, making it quite impressive.
How does AudioLM achieve this? Conceptually, AudioLM is similar to Bark but with
a different task: sound continuation rather than TTA.

AudioLM (Figure 9-11) first uses w2v-BERT, a pretrained model that maps the
waveform to rich semantic tokens (similarly to how we used an LM to generate
semantic tokens from text in Bark). Then, a semantic model predicts the future
tokens, modeling the high-level structure of the audio sequence. A second model,
the coarse acoustic model, uses the generated semantic tokens and the past acoustic
tokens to generate new ones. How are the past acoustic tokens generated? We can
pass the input waveform to a codec and retrieve the codebooks (the quantized latent
representation). This helps conserve the speaker’s characteristics and generates more
coherent audio. A fourth model, the fine acoustic model, adds more detail to the
audio, refining it, improving the quality, and removing lossy compression artifacts
from previous stages. Finally, the tokens are fed into a neural codec to reconstruct the
waveform.

AudioLM can also be trained in music, such as piano recordings, to generate coherent
continuations that conserve the rhythm and melody. Although the underlying models
are different, you might notice that the stages are similar to Bark: we train a series of
models that lead to generating high-quality codebooks and then use a neural codec
(EnCodec in Bark and SoundStream in AudioLM) to generate the final waveform.

332 | Chapter 9: Generating Audio



11 MusicCaps, the evaluation dataset used for MusicLM, is open source and can be found online.

Figure 9-11. In the AudioLM model pipeline, AudioLM converts the input audio to a
sequence of tokens and performs audio generation using language-modeling techniques
(adapted from an image in the original paper)

MusicLM (Figure 9-12) takes things further by focusing on high-quality music gener‐
ation that accurately matches text descriptions.11 For example, you can have a text
description such as “an intense rock concert with violins” as a prompt. MusicLM uses
AudioLM’s multistage setup and incorporates text conditioning.

If obtaining high-quality labeled TTS data is complex, labeled TTA can be much
more complicated. TTA systems might involve a much broader range of audio
types, including environmental sounds and music. Annotating a diverse range of
sounds with high accuracy can be more challenging and intensive. To approach this,
MusicLM uses an additional model, MuLan, which, similarly to CLIP for image-text
pairs, can map texts and their corresponding audio to the same embedding space.
Thanks to this, MuLan removed the need for captions during training and enabled
training on vast amounts of audio data. To be more concrete, during training,
MusicLM uses the embeddings computed from the audio to condition the models,
and during inference, MusicLM uses text embeddings.

From Text to Speech to Generative Audio | 333

https://oreil.ly/cRh9X
https://arxiv.org/abs/2209.03143


None of these models are open source at the time of writing.
LAION released an alternative to MuLan called CLAP. Although
trained with 20 times less data than MuLan, it can generate
diverse music samples. EnCodec is the open source alternative to
SoundStream.

Figure 9-12. MusicLM incorporates text conditioning to the AudioLM architecture, to
generate audio based on a prompt (adapted from an image in the original paper)

334 | Chapter 9: Generating Audio

https://arxiv.org/abs/2211.06687
https://arxiv.org/abs/2301.11325


AudioGen and MusicGen
In parallel, in 2022 and 2023, Meta released multiple open models for audio gen‐
eration guided by text. AudioGen can generate sound and environmental effects
(e.g., a dog barking or a door knock). AudioGen follows a flow similar to Bark
and AudioLM. It uses the text encoder from T5 to generate text embeddings and
condition the generation with them. The decoder autoregressively generates audio
tokens conditioned on the text and audio tokens from the previous steps. The final
audio tokens can finally be decoded with a neural codec.

The open source version of AudioGen is a variation of the original architecture; for
the neural codec, they retrained an EnCodec on environmental sound data. If you feel
this is familiar, it’s because it is—we’re once again doing a similar process to Bark and
AudioLM. So, what can we do with AudioGen? Three tasks with a single model:

• With the full architecture, we can create text-conditioned audio, e.g., “a dog barks•
while somebody plays the trumpet”.

• If we remove the text encoder, we can unconditionally generate sounds.•
• We can do audio continuation by using input audio tokens from an existing•

audio.

Building upon AudioGen, Meta released MusicGen, which was trained to generate
music conditioned on text and achieved better results across various metrics than
MusicLM. MusicGen passes the text descriptions through a text encoder (such as the
ones from T5 or Flan T5) to obtain embeddings. Then, it uses an LM to generate
audio codebooks conditioned on the embeddings. Finally, the audio tokens are deco‐
ded using EnCodec to get the waveform. Multiple MusicGen models were released.

AudioGen was trained with public datasets (AudioSet, AudioCaps,
etc.). MusicGen, on the other hand, was trained with 20K hours of
Meta-owned and specifically licensed music, combining an internal
dataset, Shutterstock, and Pond5 music data.

Let’s try the smallest MusicGen variant of 300 million parameters and load each
component:

from transformers import AutoProcessor, MusicgenForConditionalGeneration

model = MusicgenForConditionalGeneration.from_pretrained(
    "facebook/musicgen-small"
).to(device)
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
inputs = processor(
    text=["an intense rock guitar solo"],
    padding=True,

From Text to Speech to Generative Audio | 335



    return_tensors="pt",
).to(device)

audio_values = model.generate(
    **inputs, do_sample=True, guidance_scale=3, max_new_tokens=256
)

You’ve learned to use multiple audio generation models: Bark, SpeechT5, and Music‐
Gen. Depending on the API abstractions you expect, rather than loading the model
and processor independently and doing all the inference code ourselves, we can use
the text-to-audio and text-to-speech pipelines available in transformers. They
abstract the logic away and are great for running inference:

from transformers import pipeline

pipe = pipeline("text-to-audio", model="facebook/musicgen-small", device=device)
data = pipe("electric rock solo, very intense")

Audio Diffusion and Riffusion
Let’s explore diffusion approaches for audio generation. With spectrograms, we have
an informative visual representation of audio that can serve as a blueprint to be
converted back into sound. If only we knew of a model that could generate images,
we could do exciting things…. Wait, we know diffusion models. As discussed in
Chapter 4, we can use diffusion pipelines to create images (both conditioned and
unconditioned).

Audio Diffusion extrapolates this straightforward idea to audio: we can pick thou‐
sands of mel spectrograms from a database of songs and then train an unconditional
diffusion model to generate mel spectrogram images, which can be converted to
audio afterward. Although it sounds surprisingly simple, this yields decent results.
For example, teticio/audio-diffusion-ddim-256 is a model trained with 20,000 images
from the author’s liked songs. Let’s generate a song with this model:

from diffusers import AudioDiffusionPipeline

pipe = AudioDiffusionPipeline.from_pretrained(
    "teticio/audio-diffusion-ddim-256"
).to(device)

output = pipe()

336 | Chapter 9: Generating Audio

https://oreil.ly/cbXde


We can access the spectrogram by inspecting the result from AudioDiffusionPipe
line (output.images). Fortunately, AudioDiffusionPipeline handles the conver‐
sion of the spectrogram to audio for us (by using Griffin–Lim under the hood,
which works given the spectrogram’s quality) and returns the corresponding audio
(output.audios). Note that this model is denoising the spectrograms directly. Alter‐
natively, we could use an AutoEncoder to encode the images and work in the latent
space (as done in Chapter 5), significantly speeding up model training and inference.
This could be an excellent exercise if you’d like to dive deeper.

When you plot the spectrogram from output.images[0], you’ll
observe differences compared to the preceding spectrogram, which
was obtained from the audio output. The model is trained to gen‐
erate grayscale images, whereas the mel spectrogram is in color.
Additionally, the generated spectrogram is horizontally flipped
because of the structure of the training data. The displayed spectro‐
gram has been flipped to maintain consistency with others shown
in the chapter.

From Text to Speech to Generative Audio | 337



We can take this idea further and use a text-conditioned model to generate spectro‐
grams conditioned on text. Riffusion, for example, is a fine-tuned version of Stable
Diffusion that can generate images of spectrograms based on a text prompt. Although
this idea sounds strange, it works surprisingly well:

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "riffusion/riffusion-model-v1", torch_dtype=torch.float16
)
pipe = pipe.to(device)
prompt = "slow piano piece, classical"
negative_prompt = "drums"
spec_img = pipe(
    prompt, negative_prompt=negative_prompt, height=512, width=512
).images[0]

The simplicity of using Stable Diffusion brings lots of advantages. Common tools
such as image to image, inpainting, negative prompts, and interpolation work out of
the box. For example, you can convert an acoustic solo into an electric guitar solo or
smoothly transition between genres, like going from ambient typing sounds to jazz,
to create unique sound effects. Let’s take the previously generated spectrogram and
use an image-to-image pipeline with a new prompt to convert the piano to a guitar
song:

from diffusers import StableDiffusionImg2ImgPipeline

pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    "riffusion/riffusion-model-v1", torch_dtype=torch.float16
)

338 | Chapter 9: Generating Audio



12 If you peek into the generated audio data, you will notice two arrays. This is because Dance Diffusion was
trained with stereo sound.

pipe = pipe.to(device)

prompt = "guitar, acoustic, calmed"
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(
    prompt=prompt,
    image=spec_img,
    strength=0.7,
    guidance_scale=8,
    generator=generator,
).images[0]

Dance Diffusion
Although generating spectrograms and converting them to audio clips works
decently, using images to train an audio model is only somewhat intuitive. Rather
than using a spectrogram, we can explore training a model that can directly work
with raw audio data (the array of numbers) rather than images. As done in Chapter 4,
the UNet is a CNN with a series of downsampling layers followed by a series of
upsampling layers. Although so far we’ve been using a UNet that works for 2D data
(by using UNet2DModel), we can also use a UNet that works with the raw audio
instead, that is, have the UNet work with an array of float numbers (UNet1DModel).12

Dance Diffusion is an open source family of models for unconditional audio genera‐
tion that generates audio waveforms directly. There are different models trained with
different datasets. For example, harmonai/maestro-150k is a model trained with 200
hours of piano clips, so it can unconditionally generate piano sounds:

from diffusers import DanceDiffusionPipeline

pipe = DanceDiffusionPipeline.from_pretrained(
    "harmonai/maestro-150k", torch_dtype=torch.float16
)
pipe = pipe.to(device)
audio = pipe(audio_length_in_s=5, num_inference_steps=50).audios[0]

The setup for Dance Diffusion is similar to the one we saw in Chapter 4. By changing
the UNet2DModel and data, you can get decent results out of the box. Setting a
minimal training loop for Dance Diffusion with your data can be relatively simple
and requires little setup. The quality of these models is OK but could clearly be better.

From Text to Speech to Generative Audio | 339



More on Diffusion Models for Generative Audio
One of the significant issues of diffusion models is that their inference speed is
very slow. Inspired by Stable Diffusion, the DiffSound and AudioLDM models were
designed to operate on a latent space. This latent space is the CLAP latent embedding
space. Just like MuLan in MusicLM and CLIP in the image domain, CLAP is a model
that maps texts and audio into a shared latent space. This makes the diffusion process
much faster and removes the need for labeled data.

This is similar to Stable Diffusion but in a different modality: we use CLAP rather
than CLIP; we still use UNet backbones (actually, the same specifications as Stable
Diffusion); and we use a VAE to decode the latent space and generate mel spec‐
trograms. As done in our early TTS adventures, we use a vocoder, HiFiGAN, to
synthesize the audio waveform from the spectrogram. This architecture design gives
AudioLLM a framework for doing multiple text-guided audio manipulations. For
example, it can do inpainting, super-resolution, and style transfer.

MusicLDM modifies AudioLDM to focus entirely on music. CLAP would not work
out of the box as it’s pretrained on datasets dominated by sound effects and other
sounds, but not that much music. The authors retrained CLAP on text-music pair
datasets, improving understanding of music data. The authors also retrained the
HiFiGAN vocoder on music data to ensure the reconstructed waveforms correspond
to the music.

One of the risks with text-to-music generation is that, given the scarcity of permis‐
sive data, the diffusion process is more likely to reconstruct examples from the
original training data. To avoid this, MusicLDM uses data-augmentation techniques
to encourage the model to explore more space in the music data. For example, they
use mixup, a technique that combines two audio samples by interpolating them to
create a new one. This helps prevent overfitting and improve generalization.

Evaluating Audio-Generation Systems
TTS and TTA, just like image generation, are tricky to evaluate as there’s no single
correct generation. On top of that, the audio quality depends a lot on human percep‐
tion: imagine that you use different models to generate a song based on a prompt;
different persons will have different preferences, making it challenging and expensive
to compare models.

There have been approaches to defining objective metrics. The Frechet Audio Dis‐
tance (FAD) can be used to evaluate the quality of audio models when there isn’t
any reference audio. This metric is correlated with human perception and allows
identifying plausible audio but might not necessarily evaluate that the generated
audios adhere to the prompts. Another approach, if there are reference audios, is to
use a classifier to compute class predictions for both the prediction and the reference

340 | Chapter 9: Generating Audio



audio and then measure the KL divergence between both probability distributions. In
case of a lack of reference data, CLAP can map the input prompt and output audio to
the same embedding space and compute the similarity between the embeddings. This
approach would be strongly biased toward the pretraining data used for CLAP.

Ultimately, human evaluation is always needed for TTS and TTA systems. As men‐
tioned before, the generations’ quality is subjective, so multiple humans from diverse
backgrounds should ideally evaluate the system’s quality. A way to do this is to com‐
pute the mean opinion score (MOS), which requires humans to evaluate generations
on a certain scale. Another approach is to show humans the input prompt and two
different generations from different models. Humans are then required to say which
of the two generations is preferred.

What’s Next?
The world of generative audio is experiencing a moment of unprecedented innova‐
tion and growth. Recent advancements in audio and speech have been substantial,
yet the field remains constantly evolving, continuously offering new frontiers for
exploration.

For example, developing real-time, high-quality audio generation is an exciting
emerging area. The prospect of generating high-quality audio in real time opens up
many possibilities for applications across domains, from accessibility tools to game
development. Recent releases such as Coqui’s released XTTS, ElevenLabs TTS tools,
and Moshi by Kyutai are great examples of this.

Another emerging topic is unified modeling, which creates models that can be flex‐
ible among different tasks. Models such as SeamlessM4T that introduce a scalable
unified speech-translation system are a great example of this area. This single model
can support various audio tasks, such as TTS, speech-to-speech translation, text-to-
speech translation (generating synthetic speech in another language), and more.
This chapter explored popular high-quality speech-, audio-, and music-generation
models. The differences between these three data domains pose challenges for train‐
ing a unified model to generate audio in the three forms. However, recent model
techniques like AudioLDM 2 are exploring this direction. These models propose a
unified language of audio that enables it to create all of them and obtain decent
results comparable to or better than the other task-specific models.

Audio challenges and discussions extend beyond modeling. Key ethical concerns
include data provenance, copyright laws, memorization, and ownership. While clon‐
ing one’s voice is technically impressive, it raises serious ethical questions when
applied to other people’s voices without consent. Training a music model can be
an exciting intellectual and creative experiment, but determining fair dataset usage
remains an open question. For instance, creating a synthetic version of a celebrity’s

What’s Next? | 341

https://oreil.ly/0OUgv
https://oreil.ly/k0hd2
https://kyutai.org
https://oreil.ly/WTVBw


13 Hint: You can try heuristics, zero-shot classification, or sentence similarity, for example.

voice for advertisements without their consent could be seen as a violation of their
personal rights.

Additionally, most recent ML research for audio has primarily focused on the
English language, leaving significant progress to be made in multilingualism. If
speech-recognition models are developed predominantly for a few languages, others
may receive subpar or inaccessible services and tools. These ethical considerations
underscore the importance of responsible development and application of ML tech‐
nologies. Addressing these issues proactively can help foster trust and ensure that the
benefits of these technologies are equitably distributed.

Project Time: End-to-End Conversational System
Across the chapters, you’ve learned to use transformer models for generating text
(Chapters 2 and 6), diffusion models for image generation (Chapters 4 and 5), and
models to transcribe and generate speech (this chapter), as well as building Gradio
demos (Chapter 5). In this challenge, the goal is to build an end-to-end Gradio app in
which:

• The user can either write or speak a prompt.•
• The prompt can either be conversational or ask to generate an image.•
• Based on the prompt, the model generates a response that could be an image or•

text.
• The model will output the image and text, as well as the corresponding generated•

speech in case of text.

This project requires many design decisions. Which model would you pick? How
do you balance quality and speed? How can you determine if a prompt is asking
to generate an image?13 This open-ended project will require you to use the skills
you’ve learned across the chapters. We suggest starting with a simple version and then
iterating on it. You shouldn’t need to train any models for this project, but you can
fine-tune models if you want to. The goal is to build a fun and interactive conversa‐
tional system that can generate images, text, and audio based on user prompts.

Summary
What an adventure! The generative audio space is living in an inspiring moment,
with new models popping up every few weeks, higher-quality datasets being released,
and new labs entering the generative audio landscape. It’s normal to feel overwhelmed
by the number of models being used in the audio domain; after all, the field is

342 | Chapter 9: Generating Audio



progressing extremely fast. Insights from other modalities, such as language or diffu‐
sion models in the latent space, have inspired many of the tools we’ve employed.
Audio’s inherent complexity has led us to uncover new components like vocoders for
spectrogram-to-waveform reconstruction and neural codecs for audio compression
and decompression. While this chapter has introduced just the audio domain, it has
equipped us with the foundational knowledge to delve deeper into recent research.

If you wish to explore the field further, we suggest researching the following topics:

CTC
To learn about the CTC algorithm used by Wav2Vec2, we recommend reading
the interactive blog post “Sequence Modeling with CTC”.

ParlerTTS
ParlerTTS is a training and inference library (as well as a family of models) for
TTS. The library is lightweight and can generate high-quality and customizable
speech. We recommend exploring the ParlerTTS GitHub repository and trying
its inference and training examples.

Vocoders
In this chapter, we briefly introduced vocoders, such as HiFiGANs, which do mel
spectrogram to speech. We suggest reading about the WaveNet, MelGAN, and
HiFiGAN vocoders for a more substantial overview. What are their differences?
How are they evaluated?

Model optimization
Different model optimization techniques can lead to much faster audio genera‐
tion with minimal quality degradation. We recommend reading the blog posts
“AudioLDM 2, but Faster ⚡” and “Speculative Decoding for 2x Faster Whisper
Inference”.

Other popular models
We covered many models in this chapter. Apart from diving into them, we sug‐
gest exploring other popular models, such as Tacotron 2, FastSpeech, FastSpeech
2, TorToiSe TTS, and VALL-E. A high-level understanding of these models will
provide a complete picture of the ecosystem.

As we’ve encountered a multitude of datasets and models, Tables 9-1 and 9-2 suc‐
cinctly summarize the key resources for further exploration.

Summary | 343

https://oreil.ly/7v4tV
https://oreil.ly/UWhq0
https://oreil.ly/Hs1BQ
https://oreil.ly/0HoGz
https://oreil.ly/0HoGz


Table 9-1. Summary of datasets

Dataset Description Training hours Recommended use
LibriSpeech Narrated audiobooks English: 960 Benchmarking and pretraining

models

Multilingual
LibriSpeech

Multilingual equivalent of
LibriSpeech

English: 44,659
Total: 65,000

Benchmarking and pretraining
models

Common Voice 13 Crowd-sourced multilingual
with varying quality

English: 2,400
Total: 17,600

Multilingual systems

VoxPopuli European Parliament
recording

English: 543
Total: 1,800

Multilingual systems, domain-
specific uses, nonnative speakers

GigaSpeech Multidomain English from
audiobooks, podcasts, and
YouTube

English: 10,000 Robustness over multiple
domains

FLEURS Parallel multilingual corpus 10 hours for each of
102 languages

Evaluation in multilingual
settings (including “low digital
resource” setting)

MMS-labeled New Testament read out loud 37,000 hours for a total of
1,100 languages

Multilingual systems

MMS-unlabeled Recordings of stories and
songs

7,700 hours for 3,800 languages Multilingual systems

Table 9-2. Summary of models

Model Task Model type Notes
Wav2Vec2 English ASR Encoder transformer with CTC Trained on unlabeled English data. Can easily be

fine-tuned.

HuBERT English ASR Encoder transformer with CTC Trained on unlabeled English data. Can easily be
fine-tuned.

XLS-R Multilingual ASR Encoder transformer with CTC Trained on unlabeled data for 128 languages.

Whisper Multilingual ASR Encoder-decoder transformer Trained on a massive amount of multilingual
labeled data.

SpeechT5 ASR, TTS, and S2S Encoder-decoder transformer Adds pre- and post-nets to map speech and text
to the same space.

HiFiGAN Spectrogram to
speech

GAN with multiple
discriminators

It’s one type of vocoder.

EnCodec and
SoundStream

Audio compression Encoder-decoder Uses quantized latent space.

Bark Multilingual TTA Multistage autoregressive Predicts codebooks and uses EnCodec to
reconstruct.

MuLan and CLAP Map text and audio to
the same space

Transformer encoder for text
and CNN for audio

CLAP is the open source replication of MuLan.

AudioLM Audio continuation Multistage autoregressive Similar conceptually to Bark but uses audio
input.

MusicLM Text to music (TTM) Combines MuLan and
AudioLM

Incorporates MuLan to remove need for labeled
data.

344 | Chapter 9: Generating Audio



Model Task Model type Notes
AudioGen TTA Multistage autoregressive EnCodec is retrained on environmental sound

data.

MusicGen TTM Same as AudioGen Multiple variants are open source.

AudioLDM TTA Latent space diffusion (same
as Stable Diffusion)

Uses CLAP for latent space.

MusicLDM TTM Same as AudioLDM Retrains CLAP and HiFiGAN on music domain.

Exercises
1. What are the pros and cons of using waveforms versus spectrograms?1.
2. What’s a spectrogram, and what’s a mel spectrogram? Which one is used in2.

models?
3. Explain how CTC works. Why is it needed for encoder-based ASR models?3.
4. What would happen if the inference data had a sampling rate of 8 kHz, while the4.

model was trained with one of 16 kHz?
5. How does adding an n-gram model to an encoder-based model work?5.
6. What are the pros and cons of encoder-based versus encoder-decoder–based6.

models for ASR?
7. In which case would you prefer to use CER over WER to evaluate ASR?7.
8. What are the six nets used by SpeechT5? Which setup would be needed to8.

perform voice conversion?
9. What’s a vocoder? In which cases would you use one?9.

10. What’s the purpose of the EnCodec model?10.
11. How do TTA models leverage MuLan/CLAP to relax the need for labeled data?11.

You can find the solutions to these exercises and the following challenges in the
book’s GitHub repository.

Challenges
1. Whisper exploration. The following code snippet creates a random array and a1.

Whisper feature extractor from scratch:
import numpy as np
from transformers import WhisperFeatureExtractor

array = np.zeros((16000, ))
feature_extractor = WhisperFeatureExtractor(feature_size=100)
features = feature_extractor(

Challenges | 345

https://oreil.ly/handsonGenAIcode


    array, sampling_rate=16000, return_tensors="pt"
)

Explore the impact of changing feature_size, hop_length, and chunk_length
in the shape of the input features. Then, look at the default values of the Whisper
FeatureExtractor in its documentation and what each of them means, and try
calculating how many features would be generated for an audio chunk.

2. Voice conversion. Implement voice conversion with SpeechT5 so that an input2.
audio is spoken by a different speaker.

3. Training Dance Diffusion. Implement a small training pipeline for Dance Diffu‐3.
sion. You can use the code from Chapter 4 as a starting point.

References
Agostinelli, Andrea, et al. “MusicLM: Generating Music From Text.” arXiv, January

26, 2023. http://arxiv.org/abs/2301.11325.
Ao, Junyi, et al. “SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken

Language Processing.” arXiv, May 24, 2022. http://arxiv.org/abs/2110.07205.
Ardila, Rosana, et al. “Common Voice: A Massively-Multilingual Speech Corpus.”

arXiv, March 5, 2020. http://arxiv.org/abs/1912.06670.
Babu, Arun, et al. “XLS-R: Self-Supervised Cross-Lingual Speech Representation

Learning at Scale.” arXiv, December 16, 2021. http://arxiv.org/abs/2111.09296.
Baevski, Alexei, et al. “Wav2vec 2.0: A Framework for Self-Supervised Learning of

Speech Representations.” arXiv, October 22, 2020. http://arxiv.org/abs/2006.11477.
Barrault et al. SeamlessM4T web page. August 22, 2022. https://oreil.ly/WTVBw.
Borsos, Zalán, et al. “AudioLM: A Language Modeling Approach to Audio Genera‐

tion.” arXiv, July 25, 2023. http://arxiv.org/abs/2209.03143.
Chen, Ke, et al. “MusicLDM: Enhancing Novelty in Text-to-Music Generation Using

Beat-Synchronous Mixup Strategies.” arXiv, August 3, 2023. http://arxiv.org/abs/
2308.01546.

Conneau, Alexis, et al. “FLEURS: Few-Shot Learning Evaluation of Universal Repre‐
sentations of Speech.” arXiv, May 24, 2022. http://arxiv.org/abs/2205.12446.

Conneau, Alexis, et al. “Unsupervised Cross-lingual Representation Learning for
Speech Recognition.” arXiv, December 15, 2020. http://arxiv.org/abs/2006.13979.

Copet, Jade, et al. “Simple and Controllable Music Generation.” arXiv, June 8, 2023.
http://arxiv.org/abs/2306.05284.

Défossez, Alexandre, et al. “High Fidelity Neural Audio Compression.” arXiv, October
24, 2022. http://arxiv.org/abs/2210.13438.

346 | Chapter 9: Generating Audio

https://oreil.ly/zhipN
http://arxiv.org/abs/2301.11325
http://arxiv.org/abs/2110.07205
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/2111.09296
http://arxiv.org/abs/2006.11477
https://oreil.ly/WTVBw
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2308.01546
http://arxiv.org/abs/2308.01546
http://arxiv.org/abs/2205.12446
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2306.05284
http://arxiv.org/abs/2210.13438


Gandhi, Sanchit. “A Complete Guide to Audio Datasets.” Hugging Face blog, Decem‐
ber 15, 2022. https://oreil.ly/CXGff.

Gandhi, Sanchit, et al. “ESB: A Benchmark for Multi-domain End-to-End Speech
Recognition.” arXiv, October 24, 2022. http://arxiv.org/abs/2210.13352.

Gandhi, Sanchit, et al. Hugging Face audio course. Hugging Face, June 14, 2023.
https://oreil.ly/Z-IZ0.

Hollemans, Matthijs. “Speech Synthesis, Recognition, and More With SpeechT5.”
Hugging Face blog, February 8, 2023. https://oreil.ly/xar9H.

Hsu, Wei-Ning, et al. “HuBERT: Self-Supervised Speech Representation Learning
by Masked Prediction of Hidden Units.” arXiv, June 14, 2021. http://arxiv.org/abs/
2106.07447.

Huang, Qingqing, et al. “MuLan: A Joint Embedding of Music Audio and Natural
Language.” arXiv, August 25, 2022. http://arxiv.org/abs/2208.12415.

Kim, Jaehyeon, et al. “Conditional Variational Autoencoder with Adversarial Learn‐
ing for End-to-End Text-to-Speech.” arXiv, June 10, 2021. http://arxiv.org/abs/
2106.06103.

Kong, Jungil, et al. “HiFi-GAN: Generative Adversarial Networks for Efficient and
High Fidelity Speech Synthesis.” arXiv, October 23, 2020. http://arxiv.org/abs/
2010.05646.

Kreuk, Felix, et al. “AudioGen: Textually Guided Audio Generation.” arXiv, March 5,
2023. http://arxiv.org/abs/2209.15352.

Kucsko, Georg. 2023. Bark GitHub repository. September 17, 2023. https://oreil.ly/
Pq2K5.

Liu, Haohe, et al. “AudioLDM: Text-to-Audio Generation with Latent Diffusion Mod‐
els.” arXiv, September 9, 2023. http://arxiv.org/abs/2301.12503.

Panayotov, Vassil, et al. “Librispeech: An ASR Corpus Based on Public Domain Audio
Books.” In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 5206–10. IEEE, 2015. https://oreil.ly/MOIUF.

Patry, Nicolas. “Making Automatic Speech Recognition Work on Large Files with
Wav2Vec2 in  Transformers.” Hugging Face blog, February 1, 2022. https://
oreil.ly/gh8O1.

Pratap, Vineel, et al. “Scaling Speech Technology to 1,000+ Languages.” arXiv, May 22,
2023. http://arxiv.org/abs/2305.13516.

Radford, Alec, et al. “Robust Speech Recognition via Large-Scale Weak Supervision.”
arXiv, December 6, 2022. http://arxiv.org/abs/2212.04356.

Von Platen, Patrick. “Boosting Wav2Vec2 with N-Grams in  Transformers.” Hug‐
ging Face blog, January 12, 2022. https://oreil.ly/o0HLV.

References | 347

https://oreil.ly/CXGff
http://arxiv.org/abs/2210.13352
https://oreil.ly/Z-IZ0
https://oreil.ly/xar9H
http://arxiv.org/abs/2106.07447
http://arxiv.org/abs/2106.07447
http://arxiv.org/abs/2208.12415
http://arxiv.org/abs/2106.06103
http://arxiv.org/abs/2106.06103
http://arxiv.org/abs/2010.05646
http://arxiv.org/abs/2010.05646
http://arxiv.org/abs/2209.15352
https://oreil.ly/Pq2K5
https://oreil.ly/Pq2K5
http://arxiv.org/abs/2301.12503
https://oreil.ly/MOIUF
https://oreil.ly/gh8O1
https://oreil.ly/gh8O1
http://arxiv.org/abs/2305.13516
http://arxiv.org/abs/2212.04356
https://oreil.ly/o0HLV


Wu, Yusong, et al. “Large-Scale Contrastive Language-Audio Pretraining with Fea‐
ture Fusion and Keyword-to-Caption Augmentation.” arXiv, April 7, 2023. http://
arxiv.org/abs/2211.06687.

Yang, Dongchao, et al. “Diffsound: Discrete Diffusion Model for Text-to-Sound Gen‐
eration.” arXiv, April 28, 2023. http://arxiv.org/abs/2207.09983.

Zeghidour, Neil, et al. “SoundStream: An End-to-End Neural Audio Codec.” arXiv,
July 7, 2021. http://arxiv.org/abs/2107.03312.

348 | Chapter 9: Generating Audio

http://arxiv.org/abs/2211.06687
http://arxiv.org/abs/2211.06687
http://arxiv.org/abs/2207.09983
http://arxiv.org/abs/2107.03312


CHAPTER 10

Rapidly Advancing Areas in Generative AI

The generative AI landscape is moving very fast. Since we began working on this
book, we’ve witnessed the release of new models like GPT-4, Llama 3, Gemini, and
Sora. In addition to these, numerous new base LLMs, audio models, and diffusion
techniques have emerged. As mentioned in the Preface, this book focuses on general
principles and fundamentals that provide generalizable skills and understanding that
will allow you to follow the field as it keeps evolving.

Before wrapping up the book, we want to provide a glimpse into some of the most
exciting and rapidly advancing areas within generative AI. This chapter offers a
high-level overview of these topics and resources to allow you to dive further if you
find them interesting. Rather than aiming to make you proficient in the topics, think
of this chapter as a guide to continue your learning as you go forward.

Preference Optimization
In Chapter 6, we trained a chat model based on the Open Assistant dataset of
conversations in a supervised fashion. We used traditional fine-tuning, but there’s
been a strong wave of models that integrate preferences. These models are trained
to generate responses that are aligned with certain expectations. For example, some
people might want to train very helpful models that will always try to help, regardless
of the request. Other companies might want to train models that are more neutral
and avoid generating toxic outputs.

When a model says that it can’t help, this happens because of its preference optimi‐
zation. Preference optimization is used to steer an LLM toward a desired behavior,
which could be anything from generating less buggy code and generating text in a
conversational style to refusing to generate content about certain topics.

349



Reinforcement Learning with Human Feedback (RLHF), one of the methods used
for preference-tuning, switches the traditional fine-tuning process a bit. Just as we
did in Chapter 6, the first step is to fine-tune the model via supervised fine-tuning.
With RLHF, the fine-tuned model is then used to train a reward model. For each
prompt, the model will generate multiple potential options. Then, a judge ranks the
options, and the reward model is trained to predict the judged score. The judges are
usually humans, but there has been a tendency to use other, large models as judges
(for example, the RLAIF paper uses LLMs for ranking). The final stage is to use the
reward model to further fine-tune the original supervised fine-tuned model so that
the model learns to generate outputs that resemble the high-scoring (according to
judges) examples. RLHF was a critical component for the Llama 2 chat model as well
as for ChatGPT.

While the concept of introducing a reward model in the fine-tuning process is intri‐
guing, it also adds a layer of complexity, as shown in Figure 10-1. This has spurred
a significant amount of research aimed at replacing the reward model with a new
loss function. Recent studies, such as Direct Preference Optimization (DPO), Identity
Preference Optimization (IPO), and Kahneman–Tversky Optimization (KTO), are
notable examples of this ongoing exploration. These methods entirely remove the RL
component, which is known to be unstable and challenging to train.

Figure 10-1. RLHF has three core components: pretraining, fine-tuning, and human
feedback

RLHF can also be applied to diffusion models. Denoising diffusion policy optimiza‐
tion (DDPO) is a way to augment diffusion models using Reinforcement Learning to
fine-tune the model and improve the quality of the generated images. RLHF can also
be applied to diffusion models, as shown in Figure 10-2.

350 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2305.13301
https://arxiv.org/abs/2305.13301


Figure 10-2. RLHF applied for diffusion models

These are some additional reads on the topic:

• The Hugging Face RLHF introductory blog post is a great step-by-step overview•
of RLHF.

• Sebastian Rashka’s RLHF blog post provides a good overview of RLHF and its•
alternatives.

• To learn about RLHF in the context of diffusion models, we recommend reading•
the DDPO blog post or Tanishq Abraham’s blog.

Preference Optimization | 351

https://oreil.ly/RjZ8c
https://oreil.ly/SlmvA
https://oreil.ly/zoWD2
https://oreil.ly/um6Vq


• To learn more about DPO, IPO, and KTO, we recommend reading the HF blog•
post.

• Constitutional AI is another approach for aligning an LLM to a set of values. The•
HF blog post is a good resource to dive into it.

Long Contexts
Most LLMs discussed in the book can handle a context of up to a few thousand
tokens, with Llama 3.1 shining at 128,000 and some going up to a few hundred
thousand tokens. Proprietary models have achieved much longer contexts, such as
Gemini handling up to 2 million tokens and Anthropic Claude supporting 200,000
tokens. Handling extremely long contexts can be very useful for RAG systems (such
as the one implemented in the project of Chapter 6) or for systems that do code
generation or understanding, where an entire codebase could be used as context.

As the input grows too long, multiple issues arise:

• LLMs require more VRAM to be able to process long contexts.•
• The quality of the generations tends to degrade as the context grows. As models•

were not trained on such long contexts, they may not be able to capture the
dependencies between tokens.

• Generation becomes slow. The traditional attention mechanism is a bottleneck as•
it requires quadratic complexity.

One solution is to use window attention, which limits the number of tokens fed to
the LLM. You can think of window attention as a sliding window through the input
text. This keeps the GPU usage capped, but the quality still degrades as there may be
tokens that carry essential information before the beginning of the window. Window
attention can be adapted to take into account the initial tokens using methods such
as Attention Sinks, which is great for multiround dialogues. A different approach
is to make the attention mechanism more efficient. There are many proposals for
sub-quadratic scaling, such as Longformer (which combines window techniques with
global attention features) and Flash Attention (which optimizes memory transfers by
fusing operations). Flash Attention has become a popular solution as it makes space
requirements linear during inference.

While the mentioned approaches focus on making the attention algorithm faster or
more computationally efficient, there has also been research on extending pretrained
LLMs with rotary position embeddings (RoPE) scaling. Can we pick Llama and

352 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://oreil.ly/bEdGk
https://oreil.ly/bEdGk
https://oreil.ly/EBOjt
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2104.09864


make it handle more tokens than what it was pretrained for? RoPE changes how posi‐
tional information is incorporated into transformers, which allows them to capture
long-range dependencies. By doing minimal fine-tuning, we can extend the context
window. For example, Meta was able to extend the context window from the original
LLaMA model from 2,048 tokens to 32,768 tokens.

Another wave of research is also exploring arbitrarily long contexts. Ring Attention
and Infini-Attention are two examples of research in the direction of being able to
handle infinite context. The research on evaluation of long context models is still in
early stages. Needle in a Haystack, shown in Figure 10-3, is an example method for
long context retrieval.

Figure 10-3. Needle in a Haystack evaluates in-context retrieval on long contexts

There are parallel ongoing efforts in the ecosystem to use alternative architectures
altogether. One of them is using RNNs: RWKV is a family of open source models that
achieve efficient inference thanks to linear attention while preserving very efficient
and parallelizable training. Another alternative is using State Space Models (SSMs).
Mamba uses SSMs to achieve linear memory scaling with respect to the number of
tokens and has very fast inference.

Long Contexts | 353

https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2404.07143
https://oreil.ly/xqxL9
https://oreil.ly/Crkoi
https://oreil.ly/vQx4R


1 It is rumored that GPT-4 is also using an MoE architecture.
2 The number of activated experts is a configuration parameter that can be modified.

Some recommended reads on this topic include the following:

• The Attention Sinks blog post explains how Attention Sinks work and the results•
of different experiments.

• The Flash Attention and Flash Attention 2 papers.•
• There have been many concurrent efforts to extend context using RoPE, from a•

practitioner jumping into ML to research from Meta.
• To learn more about RWKV, we recommend reading its announcement blog•

post, its paper, or a more recent paper with architectural improvements.
• To learn about SSMs and Mamba, we recommend reading “The Annotated S4”•

and “Mamba: The Hard Way”.

Mixture of Experts
In recent years, Mixture of Experts (MoE) has emerged as a compelling approach
for LLMs, with the most notable release being Mixtral 8x7B by the Mistral team
in December 2023.1 In the context of transformer models, MoEs are very similar
to dense (traditional) transformers (see Figure 10-4), but they offer advantages in
training efficiency and production scalability. Given a fixed amount of compute to
train a model, MoEs will get you further along the training curve than dense models.
In large-scale usage, MoEs can be more efficient in handling many requests per
second.

One of the key elements of MoE models is the replacement of some or all of the feed-
forward networks in transformer blocks with sparse MoE blocks. Each MoE block is
a collection of “expert” networks, with each expert being a different model (usually
another feed-forward network). Given a token, only some experts will dynamically
activate,2 and the rest will be idle. To learn which experts to activate, MoEs use a gate
network (or router) that dynamically assigns tokens to different experts during train‐
ing and inference. This gate network acts as a traffic controller, ensuring tokens are
distributed effectively among the experts. This makes the gate a critical component of
MoEs, and much research is aimed at training better gate networks.

354 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://oreil.ly/pThW2
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2307.08691
https://oreil.ly/nfVf7
https://arxiv.org/abs/2306.15595
https://oreil.ly/224i0
https://oreil.ly/224i0
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2404.05892
https://oreil.ly/W5rQ7
https://oreil.ly/IV35L


Figure 10-4. A simplified traditional transformer block and its MoE equivalent having
two experts

It’s essential to clarify that the number of experts in MoEs does not directly lead to
a linear parameter increase. For instance, in the case of Mixtral 8x7B, the model’s
name might suggest eight experts of 7 billion parameters each, and hence 56 billion
parameters, but in reality, it comprises 47 billion parameters because of shared
components, and the eight refers to the number of experts for each MoE block!
Remember that only the feed-forward networks are replaced with MoE blocks. The
rest of the network, such as the attention blocks, is still shared.

This means that to load the model, you will need a GPU to hold 47 billion parame‐
ters. On the other hand, for a given token, only some experts will activate (2 for
Mixtral). Therefore, the number of activated parameters is much lower (12 billion for
Mixtral). This makes MoEs less interesting for local inference (because you need a lot
of GPU memory) but compelling for production setups, where you may receive many
requests at the same time. Given that fewer parameters per token will be activated
for each request being handled in parallel, an MoE should be able to handle more
requests than a dense model.

A second misconception about MoEs is that the experts become specialized in differ‐
ent tasks or subsets of data. Experts are trained with a loss function that ensures the

Mixture of Experts | 355



token generation load is distributed evenly between experts, ensuring all experts are
being used. Gated experts work more like a load balancer of sorts, and there is no
evidence of high-level task specialization.

MoEs have become widely popular in the ecosystem because of their impressive qual‐
ity and production properties. Apart from the well-known Mixtral 8x7B model, there
is also Snowflake Arctic Instruct, Databricks DBRX, Mixtral 8x22B, DeepSeekMoE,
and Qwen 1.5 MoE.

To learn more about the topic, we suggest reading the following resources:

• The Hugging Face Introductory blog to MoEs provides a high-level overview of•
the MoE research and an introductory explanation of how they work.

• The Switch Transformers paper dives into many challenges and design decisions•
for building and training MoEs. It’s an excellent paper that helps you understand
the design questions faced when working with MoEs.

• The DeepSeekMoE paper introduces some novel ideas for MoEs, such as seg‐•
menting experts into smaller ones and shared experts that will always activate.
This paper is a great read for understanding some of the cutting-edge research in
the field.

• The Mixtral paper is a nice read on how Mixtral 8x7B was trained. It does not•
introduce new architecture or training ideas, but it’s a good read for understand‐
ing how MoEs are trained in practice. This is particularly interesting given that
Mixtral was the first high-quality openly available MoE model.

Optimizations and Quantizations
Optimization techniques were traditionally sought after for two reasons:

• To maximize model performance in high-load scenarios, such as chat UIs or•
generative APIs used by thousands of users. Serving more users per server and
time unit minimizes costs and allows more users to enjoy the service.

• To reduce training time or training resources. For large models, a moderate•
reduction in the amount of memory used or in the time it takes to complete a
training step can result in dramatic speedups and the use of a lot less hardware.
Even for small labs or individual practitioners training smaller models, faster
training allows faster iteration cycles and more experiments to be completed.

356 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://oreil.ly/N5d0z
https://oreil.ly/eSSVK
https://oreil.ly/k-Yr6
https://oreil.ly/A04z8
https://oreil.ly/DDBOa
https://oreil.ly/c_Hg0
https://oreil.ly/J6EN6
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.04088


In addition, the past few years have shown the community’s overwhelming interest
in running all kinds of models, including LLMs, on consumer hardware. There are
many reasons for this: to experiment with models without an API clock ticking
over your head, to understand how models work by looking at internal activations,
to run tasks privately on your computer and even without an internet connection,
to fine-tune with your data without spending a lot of money and effort on cloud
services, etc.

As a consequence, the community is coming up with many optimization techniques
and clever tricks. We’ve already briefly explored quantization, a collection of tech‐
niques that aim to reduce the precision of the model parameters (with minimal
impact on quality) to reduce memory and fit models on consumer hardware.
Another widespread technique we just mentioned in this chapter is Flash Attention,
which not only allows longer context windows but also reduces memory consump‐
tion of all types of transformer-based models (including LMs and many other genera‐
tive models, as we saw in Chapter 4).

Another interesting speedup technique is speculative decoding, also called assisted
generation, which applies to regressive models such as LLMs. This method uses two
models with the same architecture for the same task. One of the models is small and
fast, while the other is large and has much better quality. The small model generates
several tokens as usual, and after a few of them are collected, they are passed together
to the large model for confirmation. The large model verifies them in a single pass
instead of going through the generation loop. Only the tokens confirmed by the large
model are used (the rest are discarded), but as long as the small and large models
agree frequently, this is faster than using the large model alone. This is especially
useful for structured text such as code. Memory consumption will be larger because
we will use two models instead of one, but throughput will be higher.

A somewhat similar method is Medusa decoding. This is a fine-tuning specialization
that adds new heads to an existing model so that a sequence of several tokens can be
generated at once. As in the previous case, several candidates are examined so that the
generated text is the same as if Medusa was not used.

Here are some resources to learn more about this active topic:

• This post by Merve Noyan is a gentle introduction to quantization, and in turn, it•
provides additional references to dive into the topic.

• The llama.cpp codebase contains multiple quantization and optimization tech‐•
niques, including custom kernels, to accelerate inference on consumer hardware,
including Windows and Apple Silicon.

• Quantized, ready-to-use versions of multiple LLMs are prepared and shared by•
community members such as TheBloke (Tom Jobbins). The models this solo
community member prepared have been downloaded millions of times.

Optimizations and Quantizations | 357

https://oreil.ly/79V4L
https://oreil.ly/DprKF
https://oreil.ly/BHVH_


• The Hugging Face documentation about speculative methods discusses specula‐•
tive decoding and how to use it.

• This blog post by Joao Gante is a great introduction to assisted generation/specu‐•
lative decoding.

• Lossy variants of speculative decoding are also possible. In this post, Vivien•
Tran-Thien does a fantastic job of exploring this direction.

Data
While much of this book has focused on models and their applications, the data used
to train these models is a crucial aspect of ML. Most pretrained models are trained on
vast amounts of web data. Still, by filtering this data or generating synthetic data with
other LLMs, smaller models can achieve performance comparable to much larger
ones. High-quality data can significantly enhance the performance of even small
models, such as Microsoft Phi-3. FineWeb is a high-quality filtered dataset of open
web data released as a fully open source dataset and has a technical report that shows
how the tokens were filtered for high quality.

Although synthetic data is not new, Phi opened the doors to exploring large-scale
datasets (billions of tokens) created entirely with LLMs. The first iteration of Phi,
a 1.3 billion parameter model, was trained with 6 billion tokens of high-quality
web data and 1 billion tokens of textbooks and exercises generated with GPT-3.5.
Cosmopedia is an initial effort that released a dataset of 25 billion tokens of synthetic
data covering multiple topics and was created with Mixtral 8x7B.

Tools like Argilla’s distilabel make it easy to create synthetic data and AI feedback,
which can be used for both pretraining and RLHF. While Phi and Cosmopedia focus
on large amounts of synthetic data for pretraining, ML models are increasingly used
to create preference datasets and scale up model evaluation.

Apart from the Cosmopedia release blog, we recommend reading Eugene Yan’s blog
post on generating and using synthetic data, the TinyStories paper, and Phi’s original
paper, “Textbooks Are All You Need”, as well as the follow-up reports for Phi-1.5 and
Phi-3.

For other modalities, such as image or audio, we need not only the image and audio
datasets but also text datasets that either caption or transcribe the data. Web-scale
datasets with text-image pairs have been released such as LAION-2B (used to train
the early models of Stable Diffusion), COYO 700M, and DataComp 1B. However,
scraping billions of unfiltered images from the open internet may include inappro‐
priate or illegal content, so models trained on this unfiltered data can pose open

358 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://oreil.ly/hJ-CS
https://oreil.ly/AUJp8
https://oreil.ly/6q80C
https://oreil.ly/naQMt
https://oreil.ly/_Ge0a
https://oreil.ly/ddh7Q
https://oreil.ly/StEIR
https://oreil.ly/3PhBd
https://oreil.ly/sKgmn
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2404.14219


questions regarding copyright and fair use, as well as safety challenges. Alternative
datasets with openly licensed Creative Commons image-text pairs, such as Common‐
Canvas, have been released to mitigate such challenges. For audio, open datasets
for speech, such as Mozilla’s Common Voice, and for sound effects those such as
FreeSound and Free Music Archive are well adopted. Internet-scraped and licensed
datasets also exist for audio, but there’s no centralized dataset index equivalent to
COYO or DataComp in the image domain.

One Model to Rule Them All
There are three main approaches to using LLMs and other generative models for your
specific use case, listed here in decreasing order of complexity:

1. Train a new model from scratch.1.
2. Fine-tune a pretrained model for your use case.2.
3. Use an existing model with prompt engineering or RAG.3.

The choice among these approaches depends on your resources and priorities.
Training a model from scratch is now prohibitively expensive for most companies
because of the high costs involved. Fortunately, the rise of high-quality open source
models has made it easier to obtain high-quality results with fine-tuning. Models
like BloombergGPT (for finance), AstroLLaMA (for Astronomy), and BioMistral (for
medical domains) have demonstrated that fine-tuning a strong pretrained model
with domain-specific data can sometimes yield better results than using a model out
of the box.

That said, as models’ zero-shot capabilities improve, their performance might be
good enough for many use cases without any fine-tuning. Depending on the project
requirement, the time invested in data quality and iterating on the model could be
better invested in the end product. As an example, when Meta released Llama 3
and its very high-quality instruct version, the community struggled to achieve better
results with fine-tuning, as the model was already very strong out of the box.

Another important consideration is how you deploy and consume the model.
Options include self-hosting, using a cloud provider’s out-of-the-box solutions, or
leveraging the API provided by the model trainer (e.g., OpenAI or Cohere). The
best choice depends on your specific needs. The community is increasingly adopting
tools (like langchain and llamaindex) that facilitate easy switching between solutions,
preventing dependency on a single model provider. We recommend building your
system in a way that allows easy evaluation and swapping of models as needed.

One Model to Rule Them All | 359

https://oreil.ly/Qzq0k
https://oreil.ly/Qzq0k
https://oreil.ly/ngE2F
https://freesound.org
https://oreil.ly/zFWQB
https://arxiv.org/abs/2303.17564
https://arxiv.org/abs/2309.06126
https://oreil.ly/amvEB


Computer Vision
Computer Vision is a vast field with a rich history that predates ML techniques. It
tries to derive meaningful information from images and apply it to make decisions
or actions, such as guiding an autonomous vehicle, detecting defects in a factory line,
counting objects, or monitoring traffic. ML methods revolutionized the Computer
Vision field, and, in turn, continued improvement on Computer Vision tasks sparked
research on increasingly powerful representation learning methods that gave rise to
the generative image explosion.

Traditionally, Computer Vision is approached as a set of distinct tasks because it’s
easier to break those tasks into smaller problems than attempting to solve vision
understanding in one go. Computer Vision tasks include the following:

Image classification
The problem of deciding which one among a set of categories best describes the
content of a given image. Progress on this task has increased dramatically since
2009, when the open ImageNet dataset was published alongside the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). In 2012, a deep neural
network created by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton won
that year’s challenge, showing an unbelievable performance 41% better than the
second-best solution, after years of crawling marginal progress. This event is
traditionally regarded as the beginning of the deep learning revolution, and it
shook the way ML and Computer Vision tasks were approached.

Object detection
The task of finding specific types of objects or subjects inside an image
(Figure 10-5). Given an input image, an object-detection model generates rec‐
tangles (bounding boxes) around the objects belonging to classes the model
recognizes and provides a confidence score about the probability that the object
inside each box belongs to the predicted class.

360 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://oreil.ly/8fMPA
https://oreil.ly/fwc_I
https://oreil.ly/fwc_I


Figure 10-5. Some objects detected by the YOLOv10 model, from the set of object
classes it recognizes

Segmentation
Goes one step beyond detection. This task attempts to solve the problem of
classifying each individual pixel inside an image according to a set of predefined
classes. A segmentation model trained on urban photographs, for example,
would predict the pixels in an image corresponding to a road, a tree, people
walking down the street, or cars. This is called semantic segmentation when
there’s no distinction between multiple objects of the same class (all pixels
belonging to persons would be assigned the same label identifier) or panoptic
segmentation when the model is capable of discerning different instances of
distinct objects that belong to the same class.

Depth estimation
Estimates how far objects are in an image, given just a single image with no
additional information (Figure 10-6). This is called monocular depth estimation
to distinguish from other systems that use stereo inputs (two images) or other
types of additional data. Monocular depth estimation is useful for computer
graphics, 3D, gaming, photography, and artistic tasks.

Computer Vision | 361



Figure 10-6. Apple’s Depth Pro model used to estimate a depth map from a photo

Image classification, detection, and segmentation models were traditionally trained
on a specific set of known classes. For example, the ImageNet challenge was con‐
ducted on 1,000 categories (even though the original dataset contains about 22,000
classes). This poses a scale problem: to train models that understand the world,
we’d need to use sufficient training data to cover all possible classes and nuanced
distinctions between them. Zero-shot tasks refer to the ability of a model to perform
these tasks without having been trained for a specific set of classes. For example, the
CLIP model is trained from image-text pairs downloaded from the internet, so it gets
a good understanding of image and text features that usually go together. As we saw
in Chapter 3, a trained CLIP model can be used to classify an image among a set
of arbitrary classes the user provides, without having ever been trained on images
classified in those categories.

As larger models are trained on increasingly larger amounts of data, they can solve
tasks in a zero-shot fashion without being explicitly trained for them. In addition,
these large models learn to use rich and descriptive representations, making it easy
to fine-tune for specific tasks. Furthermore, multimodal models that combine text
and visual representation (also known as vision LM) can answer natural-language
questions about image data so that they can be used in various workflows instead
of task-specific specialized models. This begs the question, are we on the verge of
another Computer Vision revolution, where it may be more fruitful to train on vast
datasets rather than focusing on specific tasks? Or will smaller fine-tuned models
keep an edge over generalist ones?

3D Computer Vision
While traditional Computer Vision primarily focuses on 2D data, such as images and
videos, there is a growing interest in understanding, interpreting, and generating 3D
data. 3D Computer Vision is widely applied in robotics, augmented reality, health‐
care, video production, gaming, and autonomous driving. Traditionally, 3D data has

362 | Chapter 10: Rapidly Advancing Areas in Generative AI



been represented using meshes—a collection of vertices, edges, and faces that define
the shape of an object (see Figure 10-7). However, ML techniques often struggle
with meshes, prompting the exploration of alternative representations such as neural
radiance fields (NeRFs) and Gaussian splatting.

Figure 10-7. A mesh can be generated even from a single image

Unlike NLP, the 3D ML ecosystem is small and highly research oriented. As a result,
many open tools are experimental and in the early stages of development. The field
is rapidly evolving; for example, the first NeRF paper was published in 2020, and
Gaussian splatting emerged in 2023. For those interested in exploring this field
further, here are some resources:

• Frank Dellaert has published blog posts in 2020, 2021, and 2022 with a recap of•
what has happened in the NeRF ecosystem. We suggest reading them chronologi‐
cally.

• Hugging Face has a free course on Machine Learning for 3D. The course is a•
high-level, practical overview of generative ML techniques that can be applied at
different steps of the 3D rendering pipeline.

Video Generation
As image-generation models have established themselves as viable use cases in gen‐
erative ML, a natural inquiry and research frontier is video. Video is, after all, a
sequence of images moving fast enough to create the illusion to the human brain
that they are in motion. As such, one approach for video generation is to leverage
pretrained image-generation models to generate temporally and visually coherent
sequences of pictures (see Figure 10-8). Frameworks such as AnimateDiff derive a
motion prior to steer models like Stable Diffusion to produce temporally coherent
videos. Pipelines such as Deforum create animations with camera control while
embracing frame variations as part of the aesthetic.

Video Generation | 363

https://oreil.ly/VrvrH
https://oreil.ly/pdFMo
https://oreil.ly/u0MKW
https://oreil.ly/U4ytr


Figure 10-8. Genmo’s Mochi-1 Preview is a text-to-video model that can create short
clips based on a text prompt

Video-to-video techniques are also a way to leverage generative models in the video
space. By leveraging an existing video and providing it with a new style or new
subjects, generative AI can transform videos or turn sketches into animations. The
Gen-1 paper by RunwayML showcases an efficient and performant method for video-
to-video transformations. This model is currently part of the company’s commercial
offerings.

However, native techniques for generating novel videos more efficiently are a
research frontier with fast-paced developments. One challenge in training native
video-generation models is the difficulty of producing video-text pairs that can be
semantically meaningful and efficient to train.

To overcome this challenge, models such as CogVideo by Tsinghua University (the
first open access text-to-video model) and Make-A-Video, released by Meta AI in
2022, employ techniques to pair uncaptioned videos with text-to-image datasets
and methods. Make-A-Video, in particular, overcomes the video-text pair data limi‐
tation by learning visual-text understanding from image-text pairs and combining
that knowledge with motion understanding learned from unsupervised and non-
captioned videos. Therefore, the model can learn what things look like and how they
move without explicit video-text pairing, enabling text-to-video and image-to-video
tasks.

This technique applied on Stable Diffusion enabled further iterations on more
efficient text-to-video open models such as ModelScope text-to-video by Alibaba.
Scaling up the size of video datasets to train such models has also been achieved with
the Stable Video Diffusion model, which trains a video Latent Diffusion model and
pairs it with a Stable Diffusion text-to-image model. The image-to-video variant of
Stable Video Diffusion was released with open weights and increased model quality
compared to Make-A-Video and ModelScope samples.

Additional scaled-up approaches for video generation have also been announced,
starting with Sora, the super-high-quality, realistic, and temporally coherent text-to-
video model by OpenAI. While the model is impressive, few technical details have

364 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://arxiv.org/abs/2302.03011
https://oreil.ly/bYCY3
https://oreil.ly/S1yhT
https://oreil.ly/aGMGS
https://arxiv.org/abs/2311.15127
https://oreil.ly/YQS6y
https://oreil.ly/zXwRf


been revealed in its technical report. In this same space, Google DeepMind unveiled
Veo—its Sora competitor. Kuai released Kling, the first Sora-level model with public
access, and RunwayML released Gen-3 a few weeks after.

On the open source and open-weights side, THUDM group at Tsinghua University
released CogVideoX 2B and CogVideoX 5B, a family of open-weight models that can
generate realistic and temporally coherent text to video on par with the closed source
alternatives previously referenced. There is also an active project on providing an
open source replication of Sora with Open-Sora, which displays fast-paced progress.

Multimodality
In the previous chapters, we explored using generative models for several modalities,
such as text, image, and audio. Some models we examined, like Stable Diffusion, have
input conditions in one modality (text) and generate outputs in another modality
(images). However, models that take in a single modality as input and produce their
outputs in a single modality (here, we can also include text-to-speech and speech-to-
text models) are not typically what the community refers to regarding multimodality
and multimodal models. Multimodality usually means that a single model can either
process inputs or yield outputs in more than one modality at once. Let’s go through
some of the most recent advancements in multimodality.

CLIP is a model architecture introduced by OpenAI in 2021 trained on millions of
images and descriptive captions of those images. Once trained, the model can take
in both image and text as inputs, and these inputs are encoded to live on the same
semantically relevant vector space. This characteristic allows the model to perform a
wide range of zero-shot tasks, such as image classification, and semantically compare
image to image or text to text. An introduction to CLIP was presented in Chapter 3.
Chapter 5 showed how the CLIP text encoder is a component of the Stable Diffusion
model.

Bootstrapping Language-Image Pre-training for Unified Vision-Language Under‐
standing and Generation (BLIP) is a framework and model architecture introduced
by Salesforce in 2022 that, like CLIP, is trained on image-text pairs. However, the
model was trained to further decode the output into text. The multimodal input of
either text, image, or both allows the model to perform zero-shot tasks such as image
captioning and visual question answering (see Figure 10-9). Follow-up works such
as BLIP-2 further refined this concept by combining a frozen image encoder and an
LLM.

Multimodality | 365

https://oreil.ly/g1z_i
https://oreil.ly/nzT9U
https://oreil.ly/YK9C4
https://oreil.ly/KR41E
https://oreil.ly/Ctxka
https://oreil.ly/o2Rp4
https://oreil.ly/pm9fY
https://oreil.ly/pm9fY
https://arxiv.org/abs/2301.12597


Figure 10-9. BLIP captioning

Visual language models (VLMs), sometimes called visual large language models
(VLLMs), can take in both images and text as inputs and provide text outputs (see
Figure 10-10). A seminal work in this space is the Flamingo paper by DeepMind in
2022, but the model was not released. Open source replications such as IDEFICS do
exist. However, training VLMs from scratch has proven costly. Approaches where
an already existing pretrained LLM is further fine-tuned to take in image outputs
through a frozen (nontrainable) image encoder have proven efficient and performant.
Architectures like BLIP-2 pioneered such an approach, but they still had relatively
narrow domain applications (captioning, question answering, etc.) and did not retain
all the capabilities of the LLMs. LLaVA, an architecture introduced by Microsoft
Research in 2023, allows this vision encoder and LLM connection while retaining
all its reasoning abilities. This approach brought in an explosion of techniques and
models in the open source community, from tiny and efficient models to SOTA
VLMs competitive with commercial models. To keep up with the space, follow the
Open VLM Leaderboard or the image-text-to-text trending models on Hugging Face.
To get hands-on experience in this area, you can start with VLM inference on
transformers. Commercial models such as OpenAI’s GPT-4 or Anthropic’s Claude
also have a VLM vision component.

366 | Chapter 10: Rapidly Advancing Areas in Generative AI

https://arxiv.org/abs/2204.14198
https://oreil.ly/5lXpU
https://oreil.ly/MgsMl
https://oreil.ly/owXmF
https://oreil.ly/7EVZg
https://oreil.ly/0vMqw
https://oreil.ly/0vMqw


Figure 10-10. VLM interface

Using the same logic as VLMs, other modalities can be achieved by leveraging a
frozen encoder. For example, Gazelle is a joint speech-language model that leverages
a pretrained LLM (Mistral 7B) and a frozen audio encoder (Wav2Vec2). The model
gets supercharged as it’s able to process and reason directly from an audio input.

Multimodal output models are the next frontier. Research and commercial models
in this space are advancing, and we expect a new wave of open multimodal output
models soon. Some foundational research in this space is the Chameleon architec‐
ture, by Meta AI, which can take in text and image inputs and also generate text
and image outputs. It has zero-shot capabilities for tasks such as image instruction
following, image editing, image captioning, question answering, and others. Archi‐
tectures for even broader multimodal input/output capabilities such as Unified-IO
and Unified-IO 2 by Allen Institute for AI have been presented, but they have yet to
be scaled significantly. As for the commercial models, OpenAI released in May 2024
a multimodal GPT-4o model that can take in image, text, and audio and output the
same modalities of image, text, and audio.

Community
As you’ve probably realized throughout the chapter and the book, the pace of the ML
ecosystem is moving very fast. The best way to keep up with the latest research and
developments is to be part of the community. There are many ways to do this, such
as joining Discord servers or Reddit communities, sharing your work with others,
reading papers, and following researchers and practitioners on X (formerly Twitter).

Surprisingly, we’ve moved from a world where all research was happening in tra‐
ditional labs to very impactful research in decentralized setups. EleutherAI, Nous

Community | 367

https://oreil.ly/NJU2r
https://oreil.ly/voppT
https://oreil.ly/voppT
https://oreil.ly/gxHqt


Research, BigCode, and LAION are all examples of the latter, and becoming involved
with their efforts can be as simple as joining their Discord servers. Many of these
communities also hold paper-reading sessions, great async chat discussions, and
hackathons.

Some of these communities were started by individual community contributors who
began their journey by tinkering with open models to scratch their own itch to solve
the problems that mattered to them. Despite the high cost of training big models
from scratch, plenty of research and development opportunities exist for anyone
interested in the field. There has never been a better time to get started than now.

368 | Chapter 10: Rapidly Advancing Areas in Generative AI



APPENDIX A

Open Source Tools

This book wouldn’t have been possible without open source. Most of the subjects we
discussed and the majority of ML research rely on open source contributions—not to
mention the production toolchain we used, with open source software such as Jupyter
Notebook, Quarto, nbdev, and many more.

In this appendix, we will explore a variety of open source tools for the ML practi‐
tioner. Some of these we’ve used in the book, while others are good to know about.
By making yourself familiar with these tools, you’ll be well equipped to extend the
applications and techniques you just learned.

The Hugging Face Stack
Throughout this book, you’ve become familiar with the core libraries of the Hugging
Face stack. These are the two main libraries we used:

transformers
The main library to train and run inference with transformer-based models
across modalities. It provides multiple levels of abstraction, from the high-level
pipeline and Trainer to supporting running your own PyTorch training loops.

diffusers
Similarly to transformers, the diffusers library allows running pretrained
diffusion-based models. Although it’s mostly known for its image-generation
capabilities, the library also supports audio, video, and 3D.

Both libraries have an opinionated design that prioritizes usability, simplicity, and
customizability. What does this mean for end users? First, both libraries aim to offer
consistent specifications across models. Whether you’re using Llama or Gemma,
switching between them should ideally be a single-line code change. While both

369



libraries have many features for fast inference, models are always loaded with the
highest precision and lowest optimization by default. This ensures usability across
platforms and avoids complex installations, but it also means that models will be
slower out of the box unless optimizations are configured.

Two additional Hugging Face libraries are commonly used as well:

accelerate
Allows running PyTorch code in distributed settings, both for training and
inference. Whether you want to run the model on a GPU, multiple GPUs, a
GPU with CPU offloading, or entirely on a CPU, accelerate abstracts away all the
complexities. It’s used under the hood by both transformers and diffusers, so most
users don’t need to learn much about the accelerate APIs.

peft
This library enables parameter-efficient fine-tuning techniques to fine-tune mod‐
els with lower computational and storage costs. It’s well integrated with trans‐
formers and diffusers. Although the book mostly explores LoRA, there are many
other methods such as p-tuning, prefix tuning, IA3, OFT, and DoRA.

Data
The open source ecosystem for dataset processing, labeling, and generation has
grown significantly in recent years. Here is a brief list of some of the tools being built
for working with data:

datasets
This book heavily relies on datasets, a popular library for accessing, sharing,
and processing open datasets for multiple modalities. Just as transformers and
diffusers, datasets provides a consistent API, allowing users to easily swap datasets
for a given modality.

argilla
Argilla is a tool for building high-quality datasets. It provides a simple UI where
humans can rate data, useful for tasks like comparing model generations (impor‐
tant for RLHF), creating datasets for classical NLP tasks (e.g., entity recognition),
or creating evaluation datasets.

distilabel
With the rise of synthetic data generation, new tools like distilabel have emerged.
It allows creating pipelines to generate synthetic data.

370 | Appendix A: Open Source Tools



Wrappers
As the ecosystem has grown, various community and research tools have been built
around transformers:

axolotl
This tool streamlines model fine-tuning; you just need to create a simple configu‐
ration file to set up your fine-tuning task. It supports common dataset formats
and model architectures.

unsloth
Unsloth aims to provide extremely fast fine-tuning of LLMs on top of transform‐
ers, using a FastLanguageModel class that incorporates optimized kernels.

sentence-transformers
As discussed in Chapter 2, transformer models can also be used to com‐
pute embeddings for a whole sentence, paragraph, or document. The sentence-
transformers library provides simple APIs to compute embeddings with
pretrained models or to fine-tune your own models.

trl
With the rise of RLHF, trl provides a simple API for fine-tuning and aligning
transformer and diffusion models. Chapter 6 showed how to do supervised
fine-tuning (SFT), but trl contains many other methods such as reward modeling
and DPO.

Local Inference
One major advantage of open models is that you can run many of them locally
on your own hardware, offering benefits such as privacy, customizability, and local
integrations (e.g., using a code model as a local IDE extension). Depending on your
use case, various tools can be used:

llama.cpp
Allows doing LLM inference on a variety of hardware. It supports multiple
quantization techniques (from 1.5 bits to 8 bits) and has massive community
adoption. It’s usually used to either chat with an LLM locally or to set up a local
endpoint for use by another local service.

Transformers.js
Allows running models directly in the browser without the need for a server.
This can be very useful to easily deploy services with low latency and no infer‐
ence costs, or for privacy-first use cases such as writing call transcriptions or
subtitles in real time.

Open Source Tools | 371



Deployment Tools
While running inference for a single query can be simple, deploying an LLM in
production is more complex. Many tools are available for this, including these two
popular ones:

vLLM
A simple library for LLM serving that is flexible and well integrated with popular
models.

TGI
A production-ready toolkit for LLM deployment.

Other options include lmdeploy and NVIDIA’s TensorRT-LLM. With so many alter‐
natives, you might wonder which one to pick. Our suggestion is to explore them and
find out which one best fits your use cases. All of them are in active development,
with different levels of model coverage, community adoption, scalability, integration
with cloud services and self-hosted environments, etc.

372 | Appendix A: Open Source Tools



APPENDIX B

LLM Memory Requirements

Models come in all sizes! Llama 3.1, for example, was released with 8B, 70B, and 405B
variants. To load and use an LLM, you need enough memory to store the model.
The number of parameters and their precision, among other factors, influence the
memory requirements for an LLM.

What can you do if you do not have enough memory? Try these options:

• Reduce the precision of the model you are using. Rather than using float16, you•
can use int8.

• Use a smaller model. There are many high-quality small models.•
• Unload parts of the model that you are not using. This can be done with CPU•

RAM offloading, a common technique to reduce a model’s memory require‐
ments at the cost of slower inference speeds. What happens if there is not
enough memory? We can then store the remaining model parts on the disk and
load them as needed. Fortunately for us, the accelerate library takes care of this
via device_map="auto", which will automatically offload parts of the model as
needed.

Inference Memory Requirements
You can roughly estimate the memory requirements as follows:

GPU memory needed = Number of parameters × Bytes per parameter

373



The bytes per parameter depends on the precision used. Without going into too
much detail, Table B-1 shows the memory needed to load 2B, 8B, 70B, and 405B
models using different levels of precision (float32, float16, int8, int4, and int2).

Table B-1. Inference memory requirements for models and levels of precision

Model float32 float16 int8 int4 int2
2B 8 GB 4 GB 2 GB 1 GB 512 MB

8B 32 GB 16 GB 8 GB 4 GB 2 GB

70B 280 GB 140 GB 70 GB 35 GB 17.5 GB

405B 1.62 TB 810 GB 405 GB 202.5 GB 101.25 GB

For reference, an H100 has 80 GB of memory, so loading Llama 3.1 405B would
require at least a full node (of 8 H100s) to load the model in 8-bit integers. This
is a rough estimate. You also need to consider the memory required for the input
and output tensors and the memory needed for the intermediate computations. For
example, long sequences require more memory than short sequences, especially as we
go to over 100,000 tokens.

At the time of writing, we can quantize models to int8 with minimal loss in perfor‐
mance. Techniques that go lower than 8 bits per parameter come with performance
degradation and are an active area of research.

Training Memory Requirements
Calculating training requirements can become trickier as they depend on the imple‐
mentation details of the model and training script. The memory requirements can
also significantly change depending on the batch size, the number of tokens in the
dataset samples, the training technique (e.g., full fine-tuning versus PEFT), and the
training parallelism setup.

The details of the memory requirements of training are beyond the scope of this
book. However, we can provide rough estimates for the memory requirements of
training LLMs. Table B-2 shows rough GPU requirements for fine-tuning Llama.

Table B-2. Training memory requirements for models and training techniques

Model Full fine-tuning LoRA QLoRA
8B 60 GB 16 GB 6B GB

70B 500 GB 160 GB 48 GB

405B 3.25 TB 950 GB 250 GB

374 | Appendix B: LLM Memory Requirements



Further Reading
If you’re interested in learning more about the memory requirements of LLMs, you
can check the following resources:

• “Transformer Math 101” by EleutherAI, which explains in detail the memory•
requirements for training a model in different setups.

• “Breaking Down GPU VRAM Consumption” is a short blog post that explains•
the components that consume GPU memory.

LLM Memory Requirements | 375

https://oreil.ly/ECVgw
https://oreil.ly/FX3zH




APPENDIX C

End-to-End Retrieval-Augmented
Generation

A popular application of LLMs is using them for content generation based on both
input prompts and externally retrieved information. In this appendix, we will demon‐
strate how to build a pipeline that leverages a pretrained LLM and a pretrained
sentence transformer to generate content based on user input and a set of documents.
We’ve explored the building blocks for this throughout the book. Chapter 2 discussed
text generation with LLMs and how to use sentence transformers for encoding text.
Chapter 6 also contained a project where we built a minimal RAG pipeline.

Let’s discuss the components of a RAG system (shown schematically in Figure C-1):

1. The user inputs a question.1.
2. The pipeline retrieves the most similar documents to the question.2.
3. The pipeline passes both the question and the retrieved documents to the LLM.3.
4. The pipeline generates a response.4.

377



Figure C-1. A simplified RAG pipeline

Processing the Data
As with any ML project, the first step is loading and processing the data. We’ll keep it
simple by focusing on a single topic. Imagine we want our model to generate content
related to the European Union AI Act, which is unlikely to be part of the LLM’s
training data because the model we’ll use was trained before work on the AI Act
started. First, we’ll load the document:

import urllib.request

# Define the file name and URL
file_name = "The-AI-Act.pdf"
url = "https://artificialintelligenceact.eu/wp-content/uploads/2021/08/The-AI-
Act.pdf"

# Download the file
urllib.request.urlretrieve(url, file_name)
print(f"{file_name} downloaded successfully.")

The-AI-Act.pdf downloaded successfully.

The document is likely too long to be processed in one go, so we’ll split it into smaller
chunks and embed each chunk separately. Each chunk will be a separate document
we’ll compare against the user input. For simplicity, we’ll use some preprocessing
tools from langchain, a library that provides utility functions to create RAG systems.
For example, it has a handy PyPDFLoader class that extracts text from PDFs and
handles chunking.

First, install the necessary dependencies:

!pip install langchain_community pypdf langchain-text-splitters

Now, let’s load and preprocess the document by using PyPDFLoader:

378 | Appendix C: End-to-End Retrieval-Augmented Generation

https://oreil.ly/m-1Wj


from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader(file_name)
docs = loader.load()
print(len(docs))

108

PyPDFLoader splits the PDF into one document per page, which leads to 108 docu‐
ments in this case. We’ll split them into even smaller chunks. The langchain library
provides classes that help with different types of text splitting. We’ll use Recursive
CharacterTextSplitter, which has two key parameters:

chunk_size

The number of characters in each chunk. In general, it’s a good idea to connect
this with the maximum number of tokens the embedding model can handle,
which is low for most sentence transformers. Otherwise, you risk having part of
the document truncated.

chunk_overlap

The number of characters each chunk overlaps with the previous one. This is
useful to avoid splitting sentences in the middle. We’ll arbitrarily set it to 100
characters (a fifth of the chunk size we chose).

from langchain_text_splitters import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=100
)
chunks = text_splitter.split_documents(docs)
print(len(chunks))

854

Let’s save the text chunks to an array:

chunked_text = [chunk.page_content for chunk in chunks]

This is what one of the chunks looks like:

chunked_text[404]

('user or for own use on the Union market for its intended '
 'purpose;  \n'
 '(12) ‘intended purpose’ means the use for which an AI system is '
 'intended by the provider, \n'
 'including the specific context and conditions of use,  as '
 'specified in the information \n'
 'supplied by the provider in the instructions for use, promotional '
 'or sales materials \n'
 'and statements, as well as in the technical documentation;  \n'
 '(13) ‘reasonably foreseeable misuse’ means the use of an AI system '
 'in a way tha t is not in')

End-to-End Retrieval-Augmented Generation | 379



Embedding the Documents
Now that we have the documents (our chunks), we need to create their embeddings.
We’ll be using a sentence transformer model as a retriever, which acts like a search
engine to find the most relevant snippets to a given question. This process relies
on computing the similarity between the embeddings of the user query and the
embeddings of the documents in our collection. To precompute all the document
embeddings, we’ll use a pretrained sentence transformer model, using the example
from “Exercises” on page 52. The following snippet loads a pretrained sentence
transformer model, BAAI/bge-small-en-v1.5, and uses it to encode two sentences:

from sentence_transformers import SentenceTransformer, util

sentences = ["I'm happy", "I'm full of happiness"]
model = SentenceTransformer("BAAI/bge-small-en-v1.5")

# Compute embedding for both sentences
embedding_1 = model.encode(sentences[0], convert_to_tensor=True)
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)

Sentence transformers return a single embedding for the whole sentence. Although
transformer models usually output one embedding per token, sentence transformers
are trained to pool the token embeddings into a single sentence embedding that
captures the semantic meaning of the text:

embedding_1.shape

torch.Size([384])

You can then compare the documents based on the cosine similarity:

util.pytorch_cos_sim(embedding_1, embedding_2)

tensor([[0.8367]], device='cuda:0')

The cosine similarity, as we saw in Chapter 3, is just the dot product of the two
embedding vectors:

embedding_1 @ embedding_2

tensor(0.8367, device='cuda:0')

Or, alternatively:

import torch

torch.dot(embedding_1, embedding_2)

tensor(0.8367, device='cuda:0')

Now that we know how to embed a sentence, let’s embed all the documents:

chunk_embeddings = model.encode(chunked_text, convert_to_tensor=True)

380 | Appendix C: End-to-End Retrieval-Augmented Generation



1 You can also use sentence_transformers' convenient semantic_search method for this use case.

This returns a 384-dimensional embedding vector for each chunk:

chunk_embeddings.shape

torch.Size([854, 384])

Retrieval
With the embedded documents, we can retrieve the most relevant ones to a given
question. We’ll use the same approach as before to calculate the cosine similarity
between the question and each document.1 Fortunately, the similarity computation
does not require iteration: it can be efficiently performed by using the built-in
PyTorch matrix multiplication primitives:

def search_documents(query, top_k=5):
    # Encode the query into a vector
    query_embedding = model.encode(query, convert_to_tensor=True)

    # Calculate cosine similarity between the query and all document chunks
    similarities = util.pytorch_cos_sim(query_embedding, chunk_embeddings)

    # Get the top k most similar chunks
    top_k_indices = similarities[0].topk(top_k).indices

    # Retrieve the corresponding document chunks
    results = [chunked_text[i] for i in top_k_indices]

    return results

Let’s try an example. We’ll truncate the output in the book to keep it short, but you
can run the code in your local environment to see the full output:

search_documents("What are prohibited ai practices?", top_k=2)

('TITLE  II \n'
 'PROHIBITED  ARTIFICIAL  INTELLIGENCE  PRACTICES  \n'
 'Article 5  \n'
 '1. The following artificial intelligence practices shall be '
 'prohibited:  \n'
 '(a) the placing on the market, putting into service o')
('low or minimal risk. The list of prohibited practices in Title II '
 'comprises all those AI systems \n'
 'whose use is considered unacceptable as contravening Unio n '
 'values, for instance by violating \n'
 'fundame')

The model correctly retrieves relevant information from the input question.

End-to-End Retrieval-Augmented Generation | 381



2 You can learn more about how this model was trained on the Hugging Face blog.

Generation
The next step is to generate a response based on the question and the retrieved
documents. Let’s use our good old friend, the instruct version of SmolLM.2 Feel free
to experiment with other models:

from transformers import pipeline

from genaibook.core import get_device

device = get_device()
generator = pipeline(
    "text-generation", model="HuggingFaceTB/SmolLM-135M-Instruct", device=device
)

We’ll use an instruct model with a chat template. As discussed in Chapter 6, trans‐
formers has utilities that format the prompt to meet the model expectations. We’ll
want to add the retrieved documents to the prompt in the RAG case:

def generate_answer(query):
    # Retrieve relevant chunks
    context_chunks = search_documents(query, top_k=2)

    # Combine the chunks into a single context string
    context = "\n".join(context_chunks)

    # Generate a response using the context
    prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer:"

    # Define the context to be passed to the model
    system_prompt = (
        "You are a friendly assistant that answers questions about the AI Act. "
        "If the user is not making a question, you can ask for clarification"
    )
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": prompt},
    ]

    response = generator(messages, max_new_tokens=300)
    return response[0]["generated_text"][2]["content"]

Let’s try one example:

answer = generate_answer("What are prohibited ai practices in the EU act?")

print(answer)

('The EU Act prohibits the use of artificial intelligence practices '
 'that are harmful to individuals, such as:\n'

382 | Appendix C: End-to-End Retrieval-Augmented Generation

https://oreil.ly/GkxE5


 '\n'
 '* The placing on the market, putting into service or use of an A I '
 'system that is subliminal, that is, it is not intended to be used '
 'for any purpose other than to deceive or manipulate individuals.\n'
 '* The use of A I systems that are designed to deceive or '
 'manipulate individuals, such as those used in advertising, '
 'marketing, or customer service.\n')

The model generates a response based on the input question and correctly retrieves
information. We’re using a tiny generative model, so scaling to a larger model can
help us obtain higher-quality generations and grow the context length, increasing the
number of retrieved documents we can pass to the context.

Production-Level RAG
The code we’ve shown is a simple example of a RAG system. In a production-level
system, you’d need to consider several additional factors:

Chunking
One of the challenges with real data is that the documents can be very long.
Finding the right chunk size is a design decision that depends on the data and
the model: snippets that are too small will truncate ideas, and those that are too
large will dilute them. You can learn more about splitting in “5 Levels Of Text
Splitting”.

Smaller embeddings
Large embeddings can be memory intensive. Active research is being conducted
to make embeddings smaller while maintaining their quality. If you are interested
in these topics, we recommend reading about Matryoshhka Embedding Models
and Embeddings Quantization.

Re-ranking
The retrieval step is crucial in RAG systems. Our retrieval models are fast and
essential for comparing thousands or millions of documents, but they are not
necessarily the most accurate. Once we retrieve the top_k documents, we can
re-rank them using a slower but higher-quality model. You can learn more
about re-ranking in sentence_transformers documentation or in “Deep Dive into
Cross-encoders and Re-ranking”.

Embedding model evaluation
There are dozens of sentence transformer models. To choose the best one for
your use case, we suggest checking out the Massive Text Embedding Benchmark,
which has information such as model size, embedding dimensions, and quality
across dozens of tasks. Note that we usually want very small and fast models for
retrieval tasks, so that should be a key factor in your decision.

End-to-End Retrieval-Augmented Generation | 383

https://oreil.ly/WV5A4
https://oreil.ly/WV5A4
https://oreil.ly/ZCsWv
https://oreil.ly/t1yFL
https://oreil.ly/Eu-Ub
https://oreil.ly/-ogvA
https://oreil.ly/-ogvA
https://oreil.ly/8m_wr


Production components
In real-world usage, you might want to integrate other components such as query
rewriting, personally identifiable information (PII) redaction, caching, and input
guardrails to prevent your model from being used inappropriately. Chip Huyen
has an excellent post, “Building a Generative AI Platform”, to learn more about
this.

Finally, there are many open source tools for building RAG systems. Here are some
recommendations to check out:

ColBERT
A fast and accurate BERT-based retrieval model

RAGatouille
A system to use and train retrieval models

Open vector databases such as Milvus, Weaviate, and Qdrant may prove useful when
you have to work with massive datasets. Diving into vector databases is outside
the scope of this book, but they are also a quickly growing field. You can see a
comparison from 2023 in the “Picking a Vector Database” blog post.

384 | Appendix C: End-to-End Retrieval-Augmented Generation

https://oreil.ly/l4R4h
https://oreil.ly/JEfYG
https://oreil.ly/fPMGq
https://oreil.ly/vX05S
https://oreil.ly/BWy95
https://oreil.ly/pARYU
https://oreil.ly/875vL


Index

A
absmax quantization, 222
accelerate library, 242, 370, 373
accuracy, 192
activation functions, 70
adapters, 213, 216-220, 239, 247, 253-257
AG News dataset, 187, 198
AlexNet, 101
Alibaba ModelScope text-to-video model, 364
Allen Institute for AI, 367
Alpaca, 216
amplitude, 297

(see also audio generation)
AnimateDiff framework, 363
“Annotated Diffusion Model” blog post, 130
Anthropic Claude, 352
Argilla, 358, 370
ASR (automatic speech recognition), 291,

307-323
encoder-based techniques, 308-312
encoder-decoder techniques, 312-315
evaluation, 318-323
production, 315-318

assisted generation, 357
AstroLLaMA, 359
Attend-and-Excite image editing, 268
audio classification, 292
Audio Diffusion, 336-338
audio generation, 291-343

end-to-end conversational system, 342
evaluation of systems, 340
future of, 341
high-quality, 341
spectrograms, 298-307

speech to text (see ASR)
text to audio, 324, 332-340

Audio Diffusion and Riffusion, 336-338
AudioGen and MusicGen, 335-336
AudioLM and MusicLM, 332-333
Dance Diffusion, 339

text to speech, 324-331
Bark, 329-331
SpeechT5, 324-329

unified modeling, 341
audio translation, 292
AudioGen, 335-336
AudioLM, 332-333
AutoEncoders, 57-93

data preparation, 57-60
decoder, 64-65
defined, 55
encoder, 61-63
goal of, 106
latent space, 70-77

dimensionality of, 70-74
visualization of, 74-77

training, 65-69
variational, 78-93

encoders and decoders, 79-80
generative modeling, 93
sampling from encoder distribution,

80-83
training, 83-93

automatic speech recognition (see ASR)
autoregressive models

decode() method, 21
defined, 17
generate() method, 20

385



model() method, 20
average pooling, 137
axolotl, 371

B
BAAI/bge-small-en-v1.5 sentence transformer,

380
bad_words_ids parameter, 23
Bark, 329-331
BART (Bidirectional and Auto-Regressive

Transformers), 37
base models, 32

(see also diffusion models; LMs)
evaluation, 230-233
fine-tuning, 212, 219
freezing, 195, 213
selecting, 190, 204-208

batch normalization, 61, 141
BBH dataset, 206
beam search, 21, 23
BeautifulSoup, 241
BERT (Bidirectional Encoder Representations

from Transformers), 38, 42, 190, 195
bfloat16 (BF16; brain floating-point) type,

221-222
bias

datasets, 9
transformer models, 46

Bidirectional and Auto-Regressive Transform‐
ers (BART), 37

Bidirectional Encoder Representations from
Transformers (BERT), 38, 42, 190, 195

BigCode, 368
BigCode Models Leaderboard, 208
BioMistral, 359
BLEU, 231
BLIP (Bootstrapping Language-Image Pre-

training for Unified Vision-Language
Understanding and Generation), 104, 242,
365

Bloom, 39
BloombergGPT, 359
brain floating-point (bfloat16; BF16) type,

221-222
“Building a Generative AI Platform” (Huyen),

384

C
CapPa, 104

catastrophic forgetting, 247
causal language models (see autoregressive

models)
CelebA-HQ dataset, 112
CelebFaces Attributes dataset, 93, 108
CER (character error rate), 319-322
CFG (classifier-free guidance), 172-173
Chameleon, 367
character-level tokenization, 15
chat templates, 228-230
ChatGLM2, 216
ChatGPT, 37
chunking, 383
CLAP (Contrastive Language-Audio Pretrain‐

ing), 95, 333, 340
classifier-free guidance (CFG), 172-173
Claude, 37, 39
CLIP (Contrastive Language-Image Pretrain‐

ing), 93-105
alternatives to, 104
contrastive loss, 94-95
image variations, 283
multimodality, 365
overview, 107
steps for, 95-102
use cases, 103
zero-shot classification, 101-103

pipeline, 102
using, 101-102

zero-shot tasks, 362
CLIP Guidance method, 104
CNNs (Convolutional Neural Networks), 119

(see also UNets)
overview, 9
speech to text, 308
transfer learning and, 41
ViTs and, 47

CoCa, 104
codecs, 330
CogVideo, 364
CogVideoX, 171, 365
Cohere Command R+, 208
ColBERT, 384
“Cold Diffusion” (Bansal et al.), 127
collators, 209
“Common Diffusion Noise Schedules and Sam‐

ple Steps Are Flawed” (Lin et al.), 134
Common Voice dataset, 293, 320, 359
CommonCanvas dataset, 178, 359

386 | Index



CommonCrawl dataset, 176
compel library, 268-270
compression, 55
Computer Vision, 360-362

freezing layers, 195
ILSVRC benchmark, 101
3D, 362

conditional diffusion models, 149-158
creating, 152
preparing data, 150-152
sampling, 157-158
training, 153-156

conditional GANs, 9
conditioned UNet architecture, 167
conditioning signals, SDXL, 169-170
confusion matrices, 201-202
Connectionist Temporal Classification (CTC),

309
consent issues, 9, 341
Constitutional AI, 352
context window, 45, 353, 357
contextual embeddings, 35
continuous time approach, 129
Contrastive Language-Audio Pretraining

(CLAP), 95, 333, 340
Contrastive Language-Image Pretraining (see

CLIP)
contrastive search, 28
ControlNet, 257, 279-282
controlnet_aux library, 281
ControLoras, 257
convolutional layers, 61
Convolutional Neural Networks (see CNNs;

UNets)
cosine similarity, 95, 100, 380
Cosmopedia dataset, 358
CosXL Edit, 278
COYO 700M dataset, 178, 358
CPU RAM offloading, 373
cropping coordinates, SDXL, 169
cross-attention mechanism, 37
“Cross-Task Generalization via Natural Lan‐

guage Crowdsourcing Instructions” (Mishra
et al.), 215

CTC (Connectionist Temporal Classification),
309

D
DALL·E, 94, 107, 111, 177

Dance Diffusion, 339
Data Filtering Networks, 105
data representations (see representations)
Databricks DBRX, 356
DataComp 1B dataset, 178, 358
DataLoader loading utility, 60, 117
datasets library, 117, 145, 187, 294
DCGANs (Deep Convolutional GANs), 9
DDIM Inverse, 274-275
DDPM Inversion, 275
ddpm-celebahq-256, 112
DDPO (denoising diffusion policy optimiza‐

tion), 350
decibels, 297

(see also audio generation)
decode() method, 16, 21
decoder architecture and models

sequence classification, 189
transformer models, 44

Deep Convolutional GANs (DCGANs), 9
“Deep Dive into Cross-encoders and Re-

ranking”, 383
deep fusion, 313
Deep Learning for Coders with fastai and

PyTorch (Howard and Gugger), 61
deep neural network, 360
DeepSeekMoE, 356
Deforum pipeline, 363
denoising diffusion policy optimization

(DDPO), 350
depth estimation, 361
DETR, 48
diffusers library, 369

adding noise, 118, 132
defined, 4
fine-tuning models, 242
image-to-image pipeline, 263
LoRA training and, 254
noise schedules, 129
sampling, 123
SOTA diffusion models, 4-6
training models, 112, 115
UNets, 119, 141

diffusion models, 111-146
alternative architectures, 142-143
annotated sampling loop, 173-176
classifier-free guidance, 172-173
compared to GANs and VAEs, 112
conditional, 149-158

Index | 387



creating, 152
preparing data, 150-152
sampling, 157-158
training, 153-156

Flux, 171
interactive ML demo, 179-180
iterative refinement, 112-115
Latent Diffusion, 159
noise schedules, 126-137

adding noise, 128-130
effect of input resolution and scaling,

135-137
reason for adding noise, 126-127
underlying math, 130-135

Stable Diffusion, 160-171
classifier-free guidance, 172-173
SDXL, 169-170
Stable Diffusion 3, 171
text encoder, 161-164
UNets, 167-169
VAE, 164-167

text to audio, 336-340
Audio Diffusion and Riffusion, 336-338
Dance Diffusion, 339

training, 115-126, 145
adding noise, 118
evaluation, 124-126
loading data, 116-117
sampling, 113, 123
steps for, 121-123
UNets, 119-120

UNets, 119-120, 137-141
building, 138-140
improving, 141

visualizing different objectives, 143
Direct Preference Optimization (DPO), 350
discrete time approach, 129
discriminator loss, 164
Distil Whisper, 315
distilabel tool, 358, 370
DistilBERT, 43, 190-192, 194
DoRA, 218
DPO (Direct Preference Optimization), 350
DreamBooth, 239, 248-253, 257

inference, 252
preparing the dataset, 250
prior preservation, 250
training the model, 251-252

dropout, 141

dynamic thresholding method, 173

E
8-bit quantization, 222
EleutherAI, 160, 367, 375
EMA (exponential moving average), 170
embeddings, 34, 42

quantization of, 383
smaller, 383

EnCodec, 330
encoder architecture and models

sequence classification, 189
speech to text, 308-312
transformer models, 37-39, 43

encoder hidden states, 162
encoder-decoder architecture and models

sequence classification, 189
speech to text, 312-315
transformer models, 35, 44

epsilon (eps) objective, 143-145
esa-hubble dataset, 241
eval mode, 63
EvalPrediction class, 194
exponential moving average (EMA), 170
extractive question answering, 43

F
F1 score, 193
FAD (Fréchet Audio Distance), 340
fair use, 9, 178
Falcon, 39, 208
Fashion MNIST dataset

creating class conditioned model, 152-153
defined, 149
preparing data, 150-152

feed-forward neural network, 34
few-shot generalization, 30-32
few-shot learning, 189
FID (Fréchet Inception Distance) scores,

124-125
“Fine-tuned Language Models Are Zero-Shot

Learners” (Wei et al.), 215
FineWeb dataset, 203, 358
Flan, 214
Flan T5, 214-216
Flash Attention, 352, 357
float16 (FP16; half-precision) type, 221-222
float32 (FP32; full precision) type, 221-222
Florence 2, 242

388 | Index



Flux, 143, 171
Fourier Transforms (FTs), 301-304
Fréchet Audio Distance (FAD), 340
Fréchet Inception Distance (FID) scores,

124-125
Free Music Archive dataset, 359
FreeSound dataset, 359
frequency, 299

(see also audio generation)
Frey Face dataset, 93, 108
FTs (Fourier Transforms), 301-304
full model fine-tuning, 239-247

(see also Stable Diffusion)
full precision (float32; FP32) type, 221-222

G
GANs (Generative Adversarial Networks), 111

compared to diffusion models, 112-113
overview, 9
spectrogram to waveform reconstruction,

328
gated recurrent units (GRUs), 36
Gaussian distributions, 78, 83
Gaussian noise, 126

(see also noise and noise schedules)
Gaussian splatting, 363
Gazelle, 367
Gemini, 352
Gemma, 37, 39, 44, 208, 222, 369
Gen-3, 365
genaibook library, xiv, 4
Generative Adversarial Networks (see GANs)
generative models, 3-12

audio generation, 291-343
big models and open source models, 10-11
conditional diffusion models, 149-158
defined, 3
diffusion models, 111-146
ethical and societal implications of, 8
evolution and current status of, 9-10
image generation, 4-6
rapid advancements in, 349-368

community, 367
Computer Vision, 360-362
data, 358-359
long contexts, 352-354
Mixture of Experts, 354-356
models for many use cases, 359
multimodality, 365-367

optimization techniques, 356-357
preference optimization, 349-351
quantization, 356-357
3D Computer Vision, 362
video generation, 363-365

sound clip generation, 8
Stable Diffusion, 160-171
text generation, 7-8
text-to-image models, 263-289
transfer learning

fine-tuning LMs, 185-234
fine-tuning Stable Diffusion, 239-259

transformer models, 13-52
GLIDE, 111
Google, 10
Google Colab, xiii
Google Dataset Search, 187
Google DeepMind, 365-366
GPQA dataset, 206
GPT-2, 14, 44, 208

few-shot tasks, 32
generating text, 7

GPT-4, 39
GPT-Neo, 208
GPUs, benefits of using, xiii
gradient_accumulation_steps hyperparameter,

245
gradient_checkpointing hyperparameter, 245
Gradio, 179-180
graphs, using transformers for, 49
greedy decoding, 21
greedy search, 23
Griffin–Lim algorithm, 327
GRUs (gated recurrent units), 36
guidance, 172-173

H
half-precision (float16; FP16) type, 221-222
hardware requirements, xiii
HEIM (Holistic Evaluation of Text-to-Image

Models), 126
HiFiGAN, 328
hot-word boosting, 312
HuBERT, 310-311
Hugging Face

defined, 3
Machine Learning for 3D course, 363
Open LLM Leaderboard, 205-208
public datasets, 187

Index | 389



pushing image-text dataset to, 242
stack, 369-370
storage of models, 5

I
Identity Preference Optimization (IPO), 350
IFEval dataset, 206
Illustrated Transformer, The (Alammar), 51
ILSVRC (ImageNet Large Scale Visual Recogni‐

tion Challenge), 101, 360
image classification, 360
image editing

inversion, 274-279
prompt weighting, 267-273
Semantic Guidance, 270-273

image generation, 4-6, 111-146
alternative architectures, 142-143
iterative refinement, 112-115
noise schedules, 126-137
training, 115-126
UNets, 137-141

Image Prompt Adapters (IP-Adapters), 283-287
image prompting, 285-287

additional controls, 287
style transfer, 286

image segmentation, 361
image variations, 283-285
image-to-image pipeline, 263-265
imagefolder mode, 242
ImageNet dataset, 101, 360
ImageNet Large Scale Visual Recognition Chal‐

lenge (ILSVRC), 101, 360
“Improving Language Understanding by Gen‐

erative Pre-Training” (Radford et al.), 51
Inception Score, 125
inpainting, 256, 265-267
input scaling, 135
instruct-tuning, 213-215, 277-279
intellectual property (IP) rights, 241
Interface class, 179
inverse schedulers, 274
inversion, 274-279

instruction fine-tuning, 277-279
LEDITS, 276-277

IP (intellectual property) rights, 241
IP-Adapters (Image Prompt Adapters), 283-287
IPO (Identity Preference Optimization), 350
iterative refinement, 112-115

J
JPEG files, 55
Jupyter Notebooks, xiv

K
Kaggle, xiii, 187
KID (Kernel Inception Distance), 125
KLD (Kullback–Leibler divergence), 83-87
KTO (Kahneman–Tversky Optimization), 350
Kuai Kling, 365

L
LAION dataset, 104, 160, 368
LAION-2B dataset, 358
LAION-5B dataset, 176-178
langchain library, 359, 378
language models (see LMs)
“Language Models Are Few-Shot Learners”

(Brown), 51
“Language Models Are Unsupervised Multitask

Learners” (Radford et al.), 51
language tower, 99
large language models (see LLMs)
Latent Diffusion, 159

(see also Stable Diffusion)
latent space, 56-57, 70-77

dimensionality of, 70-74
visualization of, 74-77

law of cosines, 95
learning rate and learning rate schedulers, 210
“Learning to Generate Task-Specific Adapters

from Task Description” (Ye and Ren), 216
LEDITS, 275-277
LibriSpeech dataset, 293, 310
LibriVox dataset, 310
librosa library, 297
LIMA dataset, 216
Llama, 7, 11, 37, 39, 44, 208, 222, 369, 374
“Llama 3 Herd of Models, The” (Dubey et al.),

202
Llama 3.1, 352
llama.cpp, 357, 371
llamaindex tool, 359
LLaVA architecture, 366
LLM.int8() quantization, 223
LLMs (large language models), 13

approaches to using, 359
long contexts, 352

390 | Index



memory requirements, 373-375
inference, 373
training, 374

lmdeploy, 372
LMs (language models), 14-32

architecture for, 33-35
few-shot generalization, 30-32
fine-tuning, 185-234

adapters, 213, 216-220
instruct-tuning, 213-215
multiple models, 212
prompting, 213
quantization, 221-230
RAG, 233-234
text classification, 186-203
text generation, 203-212

probability prediction, 17-20
text generation, 20-28, 50
text tokenization, 14-16
zero-shot generalization, 28-30

LMSYS, 232
load_dataset() method, 242
logits, 18
long audio transcription, 315
long contexts, 190, 352-354
long short-term memory (LSTM), 36
Longformer, 352
LoRAs (low-rank adaptations), 239, 247

adapters, 217-220
training, 253-257

low-rank matrices, 218
LSTM (long short-term memory), 36

M
Make-A-Video, 364
Mamba, 353
Marian NMT, 37
masked language modeling (MLM), 38
MaskGIT, 127
Massive Text Embedding Benchmark, 383
Massively Multilingual Speech (MMS) dataset,

329
MATH dataset, 206
matplotlib library, 58, 150
Matryoshhka Embedding Models, 383
max pooling, 137
mean opinion score (MOS), 341
mean squared error (MSE), 84, 121
Medusa decoding, 357

mel spectrograms, 306-307
MelGAN, 328
Meta, 10-11, 367
Midjourney, 177
Milvus vector database, 384
min_p parameter, 28
Mistral, 7, 11, 39, 208, 222
mixed_precision hyperparameter, 244
Mixtral, 208
Mixtral 8x22B, 356
Mixtral 8x7B, 354
Mixture of Experts (MoE), 208, 354-356
MLM (masked language modeling), 38
MMLU-Pro dataset, 205
MMS (Massively Multilingual Speech) dataset,

329
MNIST dataset, 57-60, 140
MobileCLIP, 105
ModelScope text-to-video model, 364
MoE (Mixture of Experts), 208, 354-356
monocular depth estimation, 361
MOS (mean opinion score), 341
Mosaic MPT, 208
MPS device, xiv
MSE (mean squared error), 84, 121
MuLan, 333
multilingualism, 342
multimodality, 49, 365-367
“Multitask Prompted Training Enables Zero-

Shot Task Generalization” (Sanh et al.), 215
Muse, 127
MusicCaps dataset, 333
MusicGen, 8, 335-336
MusicLM, 332-333
MuSR dataset, 206

N
n-gram score, 312
native video generation, 364
Natural Instructions dataset, 215
Needle in a Haystack method, 353
negative prompts, 173
NeRFs (neural radiance fields), 363
neural vocoders, 328
NLP (Natural Language Processing), 10
noise and noise schedules, 126-137

adding noise, 118, 128-130
classifier-free guidance, 172

Index | 391



effect of input resolution and scaling,
135-137

model training and, 153-156
reason for adding noise, 126-127
refiner model, 170
sampling and, 157-158
text encoder and, 161
underlying math, 130-135

Nous Research, 367
no_repeat_ngram_size parameter, 28
nucleus sampling, 26
“Null-text Inversion for Editing Real Images

Using Guided Diffusion Models” (Mokady
et al.), 275

num_train_epochs hyperparameter, 244

O
object detection, 360
Open LLM Leaderboard, 205-208
open models, 10-11, 359

conditional diffusion models, 149-158
diffusion models, 111-146
representations and compression, 55-107
Stable Diffusion, 160-171
transformer models, 13-52

open source tools, 369-372
datasets, 370
deployment tools, 372
Hugging Face stack, 369-370
local inference, 371
wrappers, 371

open-access models, 3, 7
OpenAI, 10, 94, 364

(see also CLIP)
OpenCLIP, 95, 162, 177
Oxford pets dataset, 93, 108

P
Paella, 127
panoptic segmentation, 361
Parti Prompts dataset, 126
PEFT (parameter-efficient fine-tuning),

216-220, 225-230
peft library, 370
perplexity, 231
phase, 327

(see also audio generation)
Phi, 208
Phi-3, 203, 358

“Picking A Vector Database” blog post, 384
PIL library, 48
pipeline API, 38, 43, 200, 211, 307
PixArt-Σ, 143
pooling, 137, 268
positional encoding, 34
pre-trained models, 3
precision metric, 192
preference optimization, 349-351
prior preservation loss, 248, 250
privacy issues, 9
probability prediction, 17-20
prompt weighting, 174, 267-273

merging and, 268-270
Semantic Guidance, 270-273

“Prompt-to-Prompt Image Editing with Cross
Attention Control” (Hertz et al.), 267

prompts
defined, 5
image prompting, 285-287
negative prompts, 173
prompt weighting, 174, 267-273

push_to_hub hyperparameter, 245
PyPDFLoader class, 378
Python

creating 3.10 virtual environment, xiii
hypothesis_template, 103
matplotlib library, 58

PyTorch matrix multiplication primitives, 381

Q
Qdrant vector database, 384
QLoRA, 225-226
quantization, 221-230, 356-357
Qwen, 32, 39, 44, 208
Qwen 1.5 MoE, 356
Qwen2, 14

R
RAG (retrieval-augmented generation), 53,

233-234, 377-384
components of, 377
data processing, 378-379
embedding documents, 380
generation, 382
open source tools for building RAG system,

384
production-level RAG, 383
retrieval, 381

392 | Index



RAGatouille, 384
re-ranking, 383
recall metric, 193
reconstruction loss, VAEs, 84-91
Recurrent Interface Networks (RINs), 143
Recurrent Neural Networks (see RNNs)
RecursiveCharacter TextSplitter, 379
refiner model, SDXL, 170
regulation and accountability, 9
Reinforcement Learning with Human Feedback

(RLHF), 204, 349-351
relative entropy, 83-87
ReLU function, 70
reparameterization trick, 131
repetition_penalty parameter, 22
representations, 55-107

AutoEncoders, 57-93
data preparation, 57-60
decoder, 64-65
encoder, 61-63
latent space, 70-77
training, 65-69
variational, 78-93

CLIP, 93-105
alternatives to, 104
contrastive loss, 94-95
steps for, 95-102
use cases, 103
zero-shot classification, 101-103

resolution hyperparameter, 244
resolution, SDXL, 170
retrieval-augmented generation (see RAG)
reward model, 350
Riffusion, 336-338
RINs (Recurrent Interface Networks), 143
RLHF (Reinforcement Learning with Human

Feedback), 204, 349-351
RNNs (Recurrent Neural Networks)

defined, 9
machine translation, 36
RWKV, 353

RoBERTa, 43
RoPE (rotary position embeddings) scaling,

352
ROUGE, 231
RunwayML, 160, 365
RWKV, 353

S
sampling, 23-28
sampling rate, 295
Scrapy, 241
SDXL (Stable Diffusion XL), 169-170, 257

(see also Stable Diffusion)
SeamlessM4T, 341
seeds, 6
SEGA (Semantic Guidance), 268, 270-273
SegFormer, 48
self-attention layers, UNets, 141
self-attention mechanism, transformers, 14, 19,

34
Self-Instruct dataset, 215
self-supervised pretraining, 42, 58
Semantic Guidance (SEGA), 268, 270-273
semantic search, 43, 103-106
semantic segmentation, 361
sentence transformers, 371, 380, 383
seq2seq (sequence-to-sequence) models

ASR, 312-315
text to speech, 324-329
transformer models, 35-37, 44

sequence classification, 186-203
defining evaluation metrics, 192-194
defining model type, 189
identifying datasets, 187-188
preprocessing datasets, 190-192
relevance of, 202
selecting base model, 190
training the model, 194-201

sequential processing, 45
set_transform() method, 117
SFT (supervised fine-tuning), 213-215, 277-279
shallow fusion, 313
Short-Time Fourier Transforms (STFTs), 304
sigmoid function, 69-70
signal-to-noise ratio, 135
skip connections, 137
SmolLM, 14, 208-212, 382
Snowflake Arctic Instruct, 356
softmax() method, 19
software requirements, xiii-xiv
Sora, 143, 364
SOTA (state of the art) models

defined, xvi
diffusion models, 4-6

sound and environmental effects, 335-335
sound clip generation, 8

Index | 393



sound continuation, 332
speaker diarization, 292
speaker embeddings, 326-327
spectrograms, 298-307
speculative decoding, 357
speech to text, 291, 307-323

encoder-based techniques, 308-312
encoder-decoder techniques, 312-315
evaluation, 318-323
production, 315-318

SpeechT5, 324-329
SSMs (State Space Models), 353
Stability AI, 11, 160
Stable Diffusion, 111, 160-171

audio generation, 338
fine-tuning, 239-259

additional inputs for special condition‐
ings, 256

DreamBooth, 248-253
fine-tuning the model, 242-245
inference, 246-247
inpainting, 256
preparing the dataset, 240-242
training LoRAs, 253-256

Flux, 171
image generation, 4-6
instruction fine-tuning, 277-278
SDXL, 169-170, 257, 268
Stable Diffusion 2 Depth, 256
Stable Diffusion 3, 143, 171
text encoder, 161-164
UNets, 167-169
VAE, 164-167

StableDiffusionPipeline, 4, 161
state of the art models (see SOTA models)
State Space Models (SSMs), 353
STFTs (Short-Time Fourier Transforms), 304
stochastic nature of diffusion process, 6
streamlit library, 179
subword tokenization, 16
“Super-NaturalInstructions” (Wang et al.), 215
supervised fine-tuning (SFT), 213-215, 277-279
supervised learning, 41
Swin Transformer, 48
synthetic data, 358

T
T2I adaptors, 257
target aspect ratio, SDXL, 170

TensorRT-LLM, 372
text classification, 186-203

defining evaluation metrics, 192-194
defining model type, 189
identifying datasets, 187-188
preprocessing datasets, 190-192
relevance of, 202
selecting base model, 190
training the model, 194-201

text generation, 7-8, 20-28, 50, 203-212
evaluation, 230-233
selecting the model, 204-208
training the model, 208-212

text to audio (see TTA)
text to speech (see TTS)
text tokenization, 14-16, 164
text-to-image models, 263-289

ControlNet, 279-282
image prompting, 285-287

additional controls, 287
style transfer, 286

image variations, 283-285
image-to-image pipeline, 263-265
inpainting, 265-267
inversion, 274-279
prompt weighting and image editing,

267-273
merging and, 268-270
Semantic Guidance, 270-273

Textual Inversion, 239, 250
3D Computer Vision, 362
3D data, using transformers for, 49
THUDM group, 365
time series data, using transformers for, 49
timestamps, 316
timesteps, 153-156
token classification, 42
token embeddings, 34
tokenization, 14-16, 34
tokenization training, 17
Top-K sampling, 26
Top-p sampling, 26
topk() method, 19
torchsummary library, 66
torchvision library, 60, 117
total loss, VAEs, 84-86
ToTensor() function, 60
Trainer class, 196-200
train_batch_size hyperparameter, 245

394 | Index



train_text_to_image.py script, 243-245
Tran-Thien, Vivien, 358
transfer learning, 41

fine-tuning LMs, 185-234
fine-tuning Stable Diffusion, 239-259

transformer blocks, 34
transformer models, 13-52

advantages of pretraining, 40-43
architectures, 33-39, 43

encoder-only models, 37-39
sequence-to-sequence tasks, 35-37
simplified view of, 33-35

collators, 209
diffusion models, 143
language models, 14-32

architecture for, 33-35
few-shot generalization, 30-32
probability prediction, 17-20
text generation, 20-28
text tokenization, 14-16
zero-shot generalization, 28-30

limitations of, 45-46
natural language processing, 10
non-text use cases, 46
quantization methods, 224
speech to text, 307-323

encoder-based techniques, 308-312
encoder-decoder techniques, 312-315
evaluation, 318-323
production, 315-318

training loop streamlining, 196
transformers library, 369

automatic classes, 17
loading image models, 96
normalizers, 320
overview, 7-8
speech processor, 325
wrappers, 371

Transformers.js, 371
transposed convolutions, 64
trl library, 371
TTA (text to audio), 292, 324, 332-340

Audio Diffusion and Riffusion, 336-338
AudioGen and MusicGen, 335-336
AudioLM and MusicLM, 332-333
Dance Diffusion, 339
evaluation, 340

TTS (text to speech), 291, 324-331
Bark, 329-331

evaluation, 340
SpeechT5, 324-329

typographical conventions, xiv

U
UNets, 119-120, 137-141

adding input channels, 256
audio generation, 339
building, 138-140
conditional diffusion models, 151-153
creating, 120
improving, 141
SDXL, 170
Stable Diffusion, 167-169
text encoder and, 161

unified modeling, 341
Unified-IO architecture, 367
Unnatural Instructions dataset, 215
unsloth, 371
use_8bit_adam hyperparameter, 245
use_ema hyperparameter, 244
UViT architecture, 143

V
VAEs (Variational AutoEncoders), 78-93

defined, 107
encoders and decoders, 79-80
generative modeling, 93
latent diffusion, 159
latent space, 57
sampling from encoder distribution, 80-83
SDXL and, 170
Stable Diffusion, 164-167
training, 83-93

vae_loss function, 84
validation_prompts hyperparameter, 245
variance preserving (VP) schedules, 134
Variational AutoEncoders (see VAEs)
VE (variance exploding) schedules, 134
vector databases, 384
velocity (v) objective, 144
Veo, 365
video generation, 363-365
video-to-video techniques, 364
vision tower, 98
visual language models (VLMs), 366
VITS, 329
ViTs (Vision Transformers), 47, 95
vLLM library, 372

Index | 395



VLMs (visual language models), 366
voice cloning, 292, 341
voice enhancement, 292
VP (variance preserving) schedules, 134

W
Wav2Vec2, 310-311, 318-323
WaveNet, 328
Weaviate vector database, 384
web scraping, 241
weight decay, 210
WER (word error rate), 319-323
Whisper, 312-315, 318-323
window attention, 352
WizardLM, 216
word error rate (WER), 319-323
word-level tokenization, 15

X
XLSR-53, 311

Y
Yi, 39

Z
Zalando, 150
Zenodo, 187
zero-shot classification

CLIP, 101-103
pipeline, 102
using, 101-102

image classification, 48
sequence classification, 189

zero-shot generalization, 28-30
zero-shot tasks, 362
ZIP files, 55

396 | Index



About the Authors
Omar Sanseviero was the chief llama officer and head of platform and community at
Hugging Face, leading the developer advocacy engineering, on-device, and moonshot
teams. Omar has extensive engineering experience working at Google in Google
Assistant and TensorFlow Graphics. Omar’s work at Hugging Face was at the inter‐
section of open source, product, research, and technical communities.

Pedro Cuenca is a machine learning engineer at Hugging Face, working on diffu‐
sion software, models, and applications. He has 20+ years of software development
experience in fields like internet applications and iOS. As a cofounder and CTO of
LateNiteSoft, he worked on the technology behind Camera+, a successful iPhone
app that used custom ML models for photography enhancement. He created deep-
learning models for tasks such as photography enhancement and super-resolution.
He was also involved in the development of and operations behind DALL·E mini. He
brings a practical vision of integrating AI research into real-world services and the
challenges and optimizations involved.

Apolinário Passos is a machine learning art engineer at Hugging Face, working
across teams on multiple machine learning use cases for art and creativity. Apolinário
has 10+ years of professional and artistic experience, alternating between holding
art exhibitions, coding, and product management, having been a head of product
at World Data Lab. Apolinário aims to ensure that the ML ecosystem supports and
makes sense for artistic use cases.

Jonathan Whitaker is a data scientist and deep learning researcher focused on gener‐
ative modeling. He has previously worked on several courses related to the topics
covered in this book, including the Hugging Face diffusion models class and Fast.AI’s
From Deep Learning Foundations to Stable Diffusion, which he cocreated with Jeremy
Howard in 2022. He has also applied these techniques in industry during his time as a
consultant and now works full-time on AI research and development at Answer.AI.



Colophon
The animal on the cover of Hands-On Generative AI with Transformers and Diffusion
Models is the giant African swallowtail butterfly (Papilio antimachus).

The giant African swallowtail is one of the largest species of butterfly, with a wing‐
span of up to 9–10 inches (around the size of, say, a dinner plate or vinyl record). Yet,
for all of their impressive size, relatively little is known about these colossal insects.

First discovered in 1782, swallowtails live in the tropical rainforests of west and
central Africa, where they spend most of their time in the forest canopy; males
have occasionally been observed mud-puddling at the forest floor, a behavior in
which butterflies aggregate on wet organic matter such as soil or dung in a quest for
nutrients.

Because of their diet, giant African swallowtails are highly toxic, and they have no
known predators. Though there have been some reports of a population decline
resulting from habitat destruction and poaching (specimens are highly prized and
can fetch prices of over $1,000), the IUCN has listed the giant African swallowtail as
Data Deficient: more information is needed in order for a conservation assessment
to be made. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery. The series design is by Edie Freed‐
man, Ellie Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semi‐
bold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.



Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc.  718900_7x9.1875

https://www.oreilly.com/start-trial/?utm_medium=content+synd&utm_source=general+ad&utm_campaign=tria

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Prerequisites
	What You Will Learn
	How to Read This Book
	Software and Hardware Requirements
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	State of the Art: A Moving Target
	Acknowledgments
	Jonathan
	Apolinário
	Pedro
	Omar


	Part I. Leveraging Open Models
	Chapter 1. An Introduction to Generative Media
	Generating Images
	Generating Text
	Generating Sound Clips
	Ethical and Societal Implications
	Where We’ve Been and Where Things Stand
	How Are Generative AI Models Created?
	Summary

	Chapter 2. Transformers
	A Language Model in Action
	Tokenizing Text
	Predicting Probabilities
	Generating Text
	Zero-Shot Generalization
	Few-Shot Generalization

	A Transformer Block
	Transformer Model Genealogy
	Sequence-to-Sequence Tasks
	Encoder-Only Models

	The Power of Pretraining
	Transformers Recap
	Limitations
	Beyond Text

	Project Time: Using LMs to Generate Text
	Summary
	Exercises
	Challenges
	References

	Chapter 3. Compressing and Representing Information
	AutoEncoders
	Preparing the Data
	Modeling the Encoder
	Decoder
	Training
	Exploring the Latent Space
	Visualizing the Latent Space

	Variational AutoEncoders
	VAE Encoders and Decoders
	Sampling from the Encoder Distribution
	Training the VAE
	VAEs for Generative Modeling

	CLIP
	Contrastive Loss
	Using CLIP, Step-by-Step
	Zero-Shot Image Classification with CLIP
	Zero-Shot Image-Classification Pipeline
	CLIP Use Cases

	Alternatives to CLIP
	Project Time: Semantic Image Search
	Summary
	Exercises
	Challenges
	References

	Chapter 4. Diffusion Models
	The Key Insight: Iterative Refinement
	Training a Diffusion Model
	The Data
	Adding Noise
	The UNet
	Training
	Sampling
	Evaluation

	In Depth: Noise Schedules
	Why Add Noise?
	Starting Simple
	The Math
	Effect of Input Resolution and Scaling

	In Depth: UNets and Alternatives
	A Simple UNet
	Improving the UNet
	Alternative Architectures

	In Depth: Diffusion Objectives
	Project Time: Train Your Diffusion Model
	Summary
	Exercises
	Challenges
	References

	Chapter 5. Stable Diffusion and 
Conditional Generation
	Adding Control: Conditional Diffusion Models
	Preparing the Data
	Creating a Class-Conditioned Model
	Training the Model
	Sampling

	Improving Efficiency: Latent Diffusion
	Stable Diffusion: Components in Depth
	The Text Encoder
	The Variational AutoEncoder
	The UNet
	Stable Diffusion XL
	FLUX, SD3, and Video
	Classifier-Free Guidance

	Putting It All Together: Annotated Sampling Loop
	Open Data, Open Models
	Challenges and the Sunset of LAION-5B
	Alternatives
	Fair and Commercial Use

	Project Time: Build an Interactive ML Demo with Gradio
	Summary
	Exercises
	Challenge
	References


	Part II. Transfer Learning for Generative Models
	Chapter 6. Fine-Tuning Language Models
	Classifying Text
	Identify a Dataset
	Define Which Model Type to Use
	Select a Good Base Model
	Preprocess the Dataset
	Define Evaluation Metrics
	Train the Model
	Still Relevant?

	Generating Text
	Picking the Right Generative Model
	Training a Generative Model

	Instructions
	A Quick Introduction to Adapters
	A Light Introduction to Quantization
	Putting It All Together
	A Deeper Dive into Evaluation
	Project Time: Retrieval-Augmented Generation
	Summary
	Exercises
	Challenge
	References

	Chapter 7. Fine-Tuning Stable Diffusion
	Full Stable Diffusion Fine-Tuning
	Preparing the Dataset
	Fine-Tuning the Model
	Inference

	DreamBooth
	Preparing the Dataset
	Prior Preservation
	DreamBoothing the Model
	Inference

	Training LoRAs
	Giving Stable Diffusion New Capabilities
	Inpainting
	Additional Inputs for Special Conditionings

	Project Time: Train an SDXL DreamBooth LoRA by Yourself
	Summary
	Exercises
	Challenge
	References


	Part III. Going Further
	Chapter 8. Creative Applications of 
Text-to-Image Models
	Image to Image
	Inpainting
	Prompt Weighting and Image Editing
	Prompt Weighting and Merging
	Editing Diffusion Images with Semantic Guidance

	Real Image Editing via Inversion
	Editing with LEDITS++
	Real Image Editing via Instruction Fine-Tuning

	ControlNet
	Image Prompting and Image Variations
	Image Variations
	Image Prompting

	Project Time: Your Creative Canvas
	Summary
	Exercises
	References

	Chapter 9. Generating Audio
	Audio Data
	Waveforms
	Spectrograms

	Speech to Text with Transformer-Based Architectures
	Encoder-Based Techniques
	Encoder-Decoder Techniques
	From Model to Pipeline
	Evaluation

	From Text to Speech to Generative Audio
	Generating Audio with Sequence-to-Sequence Models
	Going Beyond Speech with Bark
	AudioLM and MusicLM
	AudioGen and MusicGen
	Audio Diffusion and Riffusion
	Dance Diffusion
	More on Diffusion Models for Generative Audio

	Evaluating Audio-Generation Systems
	What’s Next?
	Project Time: End-to-End Conversational System
	Summary
	Exercises
	Challenges
	References

	Chapter 10. Rapidly Advancing Areas in Generative AI
	Preference Optimization
	Long Contexts
	Mixture of Experts
	Optimizations and Quantizations
	Data
	One Model to Rule Them All
	Computer Vision
	3D Computer Vision
	Video Generation
	Multimodality
	Community


	Appendix A. Open Source Tools
	The Hugging Face Stack
	Data
	Wrappers
	Local Inference
	Deployment Tools

	Appendix B. LLM Memory Requirements
	Inference Memory Requirements
	Training Memory Requirements
	Further Reading

	Appendix C. End-to-End Retrieval-Augmented Generation
	Processing the Data
	Embedding the Documents
	Retrieval
	Generation
	Production-Level RAG

	Index
	About the Authors
	Colophon


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


